Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cmsms | |- ( G e. CMetSp -> G e. MetSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
2 | eqid | |- ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) = ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) |
|
3 | 1 2 | iscms | |- ( G e. CMetSp <-> ( G e. MetSp /\ ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( CMet ` ( Base ` G ) ) ) ) |
4 | 3 | simplbi | |- ( G e. CMetSp -> G e. MetSp ) |