| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmsss.h |
|- K = ( M |`s A ) |
| 2 |
|
cmsss.x |
|- X = ( Base ` M ) |
| 3 |
|
cmsss.j |
|- J = ( TopOpen ` M ) |
| 4 |
|
eqid |
|- ( ( dist ` M ) |` ( X X. X ) ) = ( ( dist ` M ) |` ( X X. X ) ) |
| 5 |
2 4
|
msmet |
|- ( M e. MetSp -> ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) ) |
| 7 |
|
xpss12 |
|- ( ( A C_ X /\ A C_ X ) -> ( A X. A ) C_ ( X X. X ) ) |
| 8 |
7
|
anidms |
|- ( A C_ X -> ( A X. A ) C_ ( X X. X ) ) |
| 9 |
8
|
3ad2ant2 |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( A X. A ) C_ ( X X. X ) ) |
| 10 |
9
|
resabs1d |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) = ( ( dist ` M ) |` ( A X. A ) ) ) |
| 11 |
2
|
sseq2i |
|- ( A C_ X <-> A C_ ( Base ` M ) ) |
| 12 |
|
fvex |
|- ( Base ` M ) e. _V |
| 13 |
12
|
ssex |
|- ( A C_ ( Base ` M ) -> A e. _V ) |
| 14 |
11 13
|
sylbi |
|- ( A C_ X -> A e. _V ) |
| 15 |
14
|
3ad2ant2 |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. _V ) |
| 16 |
|
eqid |
|- ( dist ` M ) = ( dist ` M ) |
| 17 |
1 16
|
ressds |
|- ( A e. _V -> ( dist ` M ) = ( dist ` K ) ) |
| 18 |
15 17
|
syl |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( dist ` M ) = ( dist ` K ) ) |
| 19 |
18
|
reseq1d |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` M ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) |
| 20 |
10 19
|
eqtrd |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) |
| 21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 22 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 23 |
21 22
|
iscms |
|- ( K e. CMetSp <-> ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) |
| 24 |
1 2
|
ressbas2 |
|- ( A C_ X -> A = ( Base ` K ) ) |
| 25 |
24
|
adantr |
|- ( ( A C_ X /\ K e. MetSp ) -> A = ( Base ` K ) ) |
| 26 |
25
|
eqcomd |
|- ( ( A C_ X /\ K e. MetSp ) -> ( Base ` K ) = A ) |
| 27 |
26
|
sqxpeqd |
|- ( ( A C_ X /\ K e. MetSp ) -> ( ( Base ` K ) X. ( Base ` K ) ) = ( A X. A ) ) |
| 28 |
27
|
reseq2d |
|- ( ( A C_ X /\ K e. MetSp ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( A X. A ) ) ) |
| 29 |
26
|
fveq2d |
|- ( ( A C_ X /\ K e. MetSp ) -> ( CMet ` ( Base ` K ) ) = ( CMet ` A ) ) |
| 30 |
28 29
|
eleq12d |
|- ( ( A C_ X /\ K e. MetSp ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) <-> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) |
| 31 |
30
|
biimpd |
|- ( ( A C_ X /\ K e. MetSp ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) |
| 32 |
31
|
expimpd |
|- ( A C_ X -> ( ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) |
| 33 |
23 32
|
biimtrid |
|- ( A C_ X -> ( K e. CMetSp -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) ) |
| 34 |
33
|
imp |
|- ( ( A C_ X /\ K e. CMetSp ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) |
| 35 |
34
|
3adant1 |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( dist ` K ) |` ( A X. A ) ) e. ( CMet ` A ) ) |
| 36 |
20 35
|
eqeltrd |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) ) |
| 37 |
|
eqid |
|- ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) |
| 38 |
37
|
metsscmetcld |
|- ( ( ( ( dist ` M ) |` ( X X. X ) ) e. ( Met ` X ) /\ ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) ) -> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) |
| 39 |
6 36 38
|
syl2anc |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) |
| 40 |
3 2 4
|
mstopn |
|- ( M e. MetSp -> J = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) |
| 41 |
40
|
3ad2ant1 |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> J = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) |
| 42 |
41
|
fveq2d |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> ( Clsd ` J ) = ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) |
| 43 |
39 42
|
eleqtrrd |
|- ( ( M e. MetSp /\ A C_ X /\ K e. CMetSp ) -> A e. ( Clsd ` J ) ) |