Step |
Hyp |
Ref |
Expression |
1 |
|
cmsss.h |
|- K = ( M |`s A ) |
2 |
|
cmsss.x |
|- X = ( Base ` M ) |
3 |
|
cmsss.j |
|- J = ( TopOpen ` M ) |
4 |
|
simpr |
|- ( ( M e. CMetSp /\ A C_ X ) -> A C_ X ) |
5 |
|
xpss12 |
|- ( ( A C_ X /\ A C_ X ) -> ( A X. A ) C_ ( X X. X ) ) |
6 |
4 5
|
sylancom |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( A X. A ) C_ ( X X. X ) ) |
7 |
6
|
resabs1d |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) = ( ( dist ` M ) |` ( A X. A ) ) ) |
8 |
2
|
fvexi |
|- X e. _V |
9 |
8
|
ssex |
|- ( A C_ X -> A e. _V ) |
10 |
9
|
adantl |
|- ( ( M e. CMetSp /\ A C_ X ) -> A e. _V ) |
11 |
|
eqid |
|- ( dist ` M ) = ( dist ` M ) |
12 |
1 11
|
ressds |
|- ( A e. _V -> ( dist ` M ) = ( dist ` K ) ) |
13 |
10 12
|
syl |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( dist ` M ) = ( dist ` K ) ) |
14 |
1 2
|
ressbas2 |
|- ( A C_ X -> A = ( Base ` K ) ) |
15 |
14
|
adantl |
|- ( ( M e. CMetSp /\ A C_ X ) -> A = ( Base ` K ) ) |
16 |
15
|
sqxpeqd |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( A X. A ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
17 |
13 16
|
reseq12d |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( ( dist ` M ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
18 |
7 17
|
eqtrd |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
19 |
15
|
fveq2d |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( CMet ` A ) = ( CMet ` ( Base ` K ) ) ) |
20 |
18 19
|
eleq12d |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) <-> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) |
21 |
|
eqid |
|- ( ( dist ` M ) |` ( X X. X ) ) = ( ( dist ` M ) |` ( X X. X ) ) |
22 |
2 21
|
cmscmet |
|- ( M e. CMetSp -> ( ( dist ` M ) |` ( X X. X ) ) e. ( CMet ` X ) ) |
23 |
22
|
adantr |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( ( dist ` M ) |` ( X X. X ) ) e. ( CMet ` X ) ) |
24 |
|
eqid |
|- ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) |
25 |
24
|
cmetss |
|- ( ( ( dist ` M ) |` ( X X. X ) ) e. ( CMet ` X ) -> ( ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) <-> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) ) |
26 |
23 25
|
syl |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( ( ( ( dist ` M ) |` ( X X. X ) ) |` ( A X. A ) ) e. ( CMet ` A ) <-> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) ) |
27 |
20 26
|
bitr3d |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) <-> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) ) |
28 |
|
cmsms |
|- ( M e. CMetSp -> M e. MetSp ) |
29 |
|
ressms |
|- ( ( M e. MetSp /\ A e. _V ) -> ( M |`s A ) e. MetSp ) |
30 |
1 29
|
eqeltrid |
|- ( ( M e. MetSp /\ A e. _V ) -> K e. MetSp ) |
31 |
28 9 30
|
syl2an |
|- ( ( M e. CMetSp /\ A C_ X ) -> K e. MetSp ) |
32 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
33 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
34 |
32 33
|
iscms |
|- ( K e. CMetSp <-> ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) |
35 |
34
|
baib |
|- ( K e. MetSp -> ( K e. CMetSp <-> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) |
36 |
31 35
|
syl |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( K e. CMetSp <-> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) |
37 |
28
|
adantr |
|- ( ( M e. CMetSp /\ A C_ X ) -> M e. MetSp ) |
38 |
3 2 21
|
mstopn |
|- ( M e. MetSp -> J = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) |
39 |
37 38
|
syl |
|- ( ( M e. CMetSp /\ A C_ X ) -> J = ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) |
40 |
39
|
fveq2d |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( Clsd ` J ) = ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) |
41 |
40
|
eleq2d |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> A e. ( Clsd ` ( MetOpen ` ( ( dist ` M ) |` ( X X. X ) ) ) ) ) ) |
42 |
27 36 41
|
3bitr4d |
|- ( ( M e. CMetSp /\ A C_ X ) -> ( K e. CMetSp <-> A e. ( Clsd ` J ) ) ) |