Metamath Proof Explorer


Theorem cmtcomN

Description: Commutation is symmetric. Theorem 2(v) in Kalmbach p. 22. ( cmcmi analog.) (Contributed by NM, 7-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtcom.b
|- B = ( Base ` K )
cmtcom.c
|- C = ( cm ` K )
Assertion cmtcomN
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y <-> Y C X ) )

Proof

Step Hyp Ref Expression
1 cmtcom.b
 |-  B = ( Base ` K )
2 cmtcom.c
 |-  C = ( cm ` K )
3 1 2 cmtcomlemN
 |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y -> Y C X ) )
4 1 2 cmtcomlemN
 |-  ( ( K e. OML /\ Y e. B /\ X e. B ) -> ( Y C X -> X C Y ) )
5 4 3com23
 |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( Y C X -> X C Y ) )
6 3 5 impbid
 |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y <-> Y C X ) )