Step |
Hyp |
Ref |
Expression |
1 |
|
cmvth.a |
|- ( ph -> A e. RR ) |
2 |
|
cmvth.b |
|- ( ph -> B e. RR ) |
3 |
|
cmvth.lt |
|- ( ph -> A < B ) |
4 |
|
cmvth.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
5 |
|
cmvth.g |
|- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
6 |
|
cmvth.df |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
7 |
|
cmvth.dg |
|- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
8 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
9 |
8
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
10 |
8
|
mulcn |
|- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
11 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
12 |
4 11
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
13 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
14 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
15 |
1 2 3
|
ltled |
|- ( ph -> A <_ B ) |
16 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
18 |
12 17
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. RR ) |
19 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
20 |
13 14 15 19
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
21 |
12 20
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. RR ) |
22 |
18 21
|
resubcld |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
23 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
24 |
1 2 23
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
25 |
|
ax-resscn |
|- RR C_ CC |
26 |
24 25
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
27 |
25
|
a1i |
|- ( ph -> RR C_ CC ) |
28 |
|
cncfmptc |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> ( ( F ` B ) - ( F ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
29 |
22 26 27 28
|
syl3anc |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( F ` B ) - ( F ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
30 |
|
cncff |
|- ( G e. ( ( A [,] B ) -cn-> RR ) -> G : ( A [,] B ) --> RR ) |
31 |
5 30
|
syl |
|- ( ph -> G : ( A [,] B ) --> RR ) |
32 |
31
|
feqmptd |
|- ( ph -> G = ( z e. ( A [,] B ) |-> ( G ` z ) ) ) |
33 |
32 5
|
eqeltrrd |
|- ( ph -> ( z e. ( A [,] B ) |-> ( G ` z ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
34 |
|
remulcl |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. RR ) |
35 |
8 10 29 33 25 34
|
cncfmpt2ss |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
36 |
31 17
|
ffvelrnd |
|- ( ph -> ( G ` B ) e. RR ) |
37 |
31 20
|
ffvelrnd |
|- ( ph -> ( G ` A ) e. RR ) |
38 |
36 37
|
resubcld |
|- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
39 |
|
cncfmptc |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> ( ( G ` B ) - ( G ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
40 |
38 26 27 39
|
syl3anc |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( G ` B ) - ( G ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
41 |
12
|
feqmptd |
|- ( ph -> F = ( z e. ( A [,] B ) |-> ( F ` z ) ) ) |
42 |
41 4
|
eqeltrrd |
|- ( ph -> ( z e. ( A [,] B ) |-> ( F ` z ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
43 |
|
remulcl |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) |
44 |
8 10 40 42 25 43
|
cncfmpt2ss |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
45 |
|
resubcl |
|- ( ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. RR /\ ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. RR ) |
46 |
8 9 35 44 25 45
|
cncfmpt2ss |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
47 |
22
|
recnd |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
48 |
47
|
adantr |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
49 |
31
|
ffvelrnda |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( G ` z ) e. RR ) |
50 |
49
|
recnd |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( G ` z ) e. CC ) |
51 |
48 50
|
mulcld |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. CC ) |
52 |
38
|
adantr |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
53 |
12
|
ffvelrnda |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` z ) e. RR ) |
54 |
52 53
|
remulcld |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) |
55 |
54
|
recnd |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. CC ) |
56 |
51 55
|
subcld |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. CC ) |
57 |
8
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
58 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
59 |
1 2 58
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
60 |
27 24 56 57 8 59
|
dvmptntr |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ) |
61 |
|
reelprrecn |
|- RR e. { RR , CC } |
62 |
61
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
63 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
64 |
63
|
sseli |
|- ( z e. ( A (,) B ) -> z e. ( A [,] B ) ) |
65 |
64 51
|
sylan2 |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. CC ) |
66 |
|
ovex |
|- ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) e. _V |
67 |
66
|
a1i |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) e. _V ) |
68 |
64 50
|
sylan2 |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( G ` z ) e. CC ) |
69 |
|
fvexd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. _V ) |
70 |
32
|
oveq2d |
|- ( ph -> ( RR _D G ) = ( RR _D ( z e. ( A [,] B ) |-> ( G ` z ) ) ) ) |
71 |
|
dvf |
|- ( RR _D G ) : dom ( RR _D G ) --> CC |
72 |
7
|
feq2d |
|- ( ph -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) ) |
73 |
71 72
|
mpbii |
|- ( ph -> ( RR _D G ) : ( A (,) B ) --> CC ) |
74 |
73
|
feqmptd |
|- ( ph -> ( RR _D G ) = ( z e. ( A (,) B ) |-> ( ( RR _D G ) ` z ) ) ) |
75 |
27 24 50 57 8 59
|
dvmptntr |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( G ` z ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( G ` z ) ) ) ) |
76 |
70 74 75
|
3eqtr3rd |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( G ` z ) ) ) = ( z e. ( A (,) B ) |-> ( ( RR _D G ) ` z ) ) ) |
77 |
62 68 69 76 47
|
dvmptcmul |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) ) ) |
78 |
64 55
|
sylan2 |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. CC ) |
79 |
|
ovex |
|- ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) e. _V |
80 |
79
|
a1i |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) e. _V ) |
81 |
53
|
recnd |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` z ) e. CC ) |
82 |
64 81
|
sylan2 |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( F ` z ) e. CC ) |
83 |
|
fvexd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. _V ) |
84 |
41
|
oveq2d |
|- ( ph -> ( RR _D F ) = ( RR _D ( z e. ( A [,] B ) |-> ( F ` z ) ) ) ) |
85 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
86 |
6
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
87 |
85 86
|
mpbii |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
88 |
87
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( z e. ( A (,) B ) |-> ( ( RR _D F ) ` z ) ) ) |
89 |
27 24 81 57 8 59
|
dvmptntr |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( F ` z ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( F ` z ) ) ) ) |
90 |
84 88 89
|
3eqtr3rd |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( F ` z ) ) ) = ( z e. ( A (,) B ) |-> ( ( RR _D F ) ` z ) ) ) |
91 |
38
|
recnd |
|- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
92 |
62 82 83 90 91
|
dvmptcmul |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) |
93 |
62 65 67 77 78 80 92
|
dvmptsub |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
94 |
60 93
|
eqtrd |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
95 |
94
|
dmeqd |
|- ( ph -> dom ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = dom ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
96 |
|
ovex |
|- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) e. _V |
97 |
|
eqid |
|- ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) |
98 |
96 97
|
dmmpti |
|- dom ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) = ( A (,) B ) |
99 |
95 98
|
eqtrdi |
|- ( ph -> dom ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( A (,) B ) ) |
100 |
18
|
recnd |
|- ( ph -> ( F ` B ) e. CC ) |
101 |
37
|
recnd |
|- ( ph -> ( G ` A ) e. CC ) |
102 |
100 101
|
mulcld |
|- ( ph -> ( ( F ` B ) x. ( G ` A ) ) e. CC ) |
103 |
21
|
recnd |
|- ( ph -> ( F ` A ) e. CC ) |
104 |
36
|
recnd |
|- ( ph -> ( G ` B ) e. CC ) |
105 |
103 104
|
mulcld |
|- ( ph -> ( ( F ` A ) x. ( G ` B ) ) e. CC ) |
106 |
103 101
|
mulcld |
|- ( ph -> ( ( F ` A ) x. ( G ` A ) ) e. CC ) |
107 |
102 105 106
|
nnncan2d |
|- ( ph -> ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
108 |
100 104
|
mulcld |
|- ( ph -> ( ( F ` B ) x. ( G ` B ) ) e. CC ) |
109 |
108 105 102
|
nnncan1d |
|- ( ph -> ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
110 |
107 109
|
eqtr4d |
|- ( ph -> ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) = ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) ) |
111 |
100 103 101
|
subdird |
|- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
112 |
91 103
|
mulcomd |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) = ( ( F ` A ) x. ( ( G ` B ) - ( G ` A ) ) ) ) |
113 |
103 104 101
|
subdid |
|- ( ph -> ( ( F ` A ) x. ( ( G ` B ) - ( G ` A ) ) ) = ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
114 |
112 113
|
eqtrd |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) = ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
115 |
111 114
|
oveq12d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) = ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) ) |
116 |
100 103 104
|
subdird |
|- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
117 |
91 100
|
mulcomd |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) = ( ( F ` B ) x. ( ( G ` B ) - ( G ` A ) ) ) ) |
118 |
100 104 101
|
subdid |
|- ( ph -> ( ( F ` B ) x. ( ( G ` B ) - ( G ` A ) ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) |
119 |
117 118
|
eqtrd |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) |
120 |
116 119
|
oveq12d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) = ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) ) |
121 |
110 115 120
|
3eqtr4d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
122 |
|
fveq2 |
|- ( z = A -> ( G ` z ) = ( G ` A ) ) |
123 |
122
|
oveq2d |
|- ( z = A -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) ) |
124 |
|
fveq2 |
|- ( z = A -> ( F ` z ) = ( F ` A ) ) |
125 |
124
|
oveq2d |
|- ( z = A -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) |
126 |
123 125
|
oveq12d |
|- ( z = A -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
127 |
|
eqid |
|- ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) = ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) |
128 |
|
ovex |
|- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. _V |
129 |
126 127 128
|
fvmpt3i |
|- ( A e. ( A [,] B ) -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
130 |
20 129
|
syl |
|- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
131 |
|
fveq2 |
|- ( z = B -> ( G ` z ) = ( G ` B ) ) |
132 |
131
|
oveq2d |
|- ( z = B -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) ) |
133 |
|
fveq2 |
|- ( z = B -> ( F ` z ) = ( F ` B ) ) |
134 |
133
|
oveq2d |
|- ( z = B -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) |
135 |
132 134
|
oveq12d |
|- ( z = B -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
136 |
135 127 128
|
fvmpt3i |
|- ( B e. ( A [,] B ) -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
137 |
17 136
|
syl |
|- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
138 |
121 130 137
|
3eqtr4d |
|- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) ) |
139 |
1 2 3 46 99 138
|
rolle |
|- ( ph -> E. x e. ( A (,) B ) ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 ) |
140 |
94
|
fveq1d |
|- ( ph -> ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = ( ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ` x ) ) |
141 |
|
fveq2 |
|- ( z = x -> ( ( RR _D G ) ` z ) = ( ( RR _D G ) ` x ) ) |
142 |
141
|
oveq2d |
|- ( z = x -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) ) |
143 |
|
fveq2 |
|- ( z = x -> ( ( RR _D F ) ` z ) = ( ( RR _D F ) ` x ) ) |
144 |
143
|
oveq2d |
|- ( z = x -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |
145 |
142 144
|
oveq12d |
|- ( z = x -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
146 |
145 97 96
|
fvmpt3i |
|- ( x e. ( A (,) B ) -> ( ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ` x ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
147 |
140 146
|
sylan9eq |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
148 |
147
|
eqeq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) = 0 ) ) |
149 |
47
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
150 |
73
|
ffvelrnda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D G ) ` x ) e. CC ) |
151 |
149 150
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) e. CC ) |
152 |
91
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
153 |
87
|
ffvelrnda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
154 |
152 153
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) e. CC ) |
155 |
151 154
|
subeq0ad |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) = 0 <-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
156 |
148 155
|
bitrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
157 |
156
|
rexbidva |
|- ( ph -> ( E. x e. ( A (,) B ) ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
158 |
139 157
|
mpbid |
|- ( ph -> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |