| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmvth.a |
|- ( ph -> A e. RR ) |
| 2 |
|
cmvth.b |
|- ( ph -> B e. RR ) |
| 3 |
|
cmvth.lt |
|- ( ph -> A < B ) |
| 4 |
|
cmvth.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 5 |
|
cmvth.g |
|- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
| 6 |
|
cmvth.df |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 7 |
|
cmvth.dg |
|- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
| 8 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 9 |
8
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 10 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 11 |
4 10
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 12 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 13 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 14 |
1 2 3
|
ltled |
|- ( ph -> A <_ B ) |
| 15 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 16 |
12 13 14 15
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
| 17 |
11 16
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. RR ) |
| 18 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 19 |
12 13 14 18
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
| 20 |
11 19
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. RR ) |
| 21 |
17 20
|
resubcld |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
| 22 |
21
|
recnd |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 24 |
|
cncff |
|- ( G e. ( ( A [,] B ) -cn-> RR ) -> G : ( A [,] B ) --> RR ) |
| 25 |
5 24
|
syl |
|- ( ph -> G : ( A [,] B ) --> RR ) |
| 26 |
25
|
ffvelcdmda |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( G ` z ) e. RR ) |
| 27 |
26
|
recnd |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( G ` z ) e. CC ) |
| 28 |
|
ovmpot |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. CC /\ ( G ` z ) e. CC ) -> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) |
| 29 |
23 27 28
|
syl2anc |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) |
| 30 |
29
|
eqeq2d |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) <-> w = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) |
| 31 |
30
|
pm5.32da |
|- ( ph -> ( ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) <-> ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) ) |
| 32 |
31
|
opabbidv |
|- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) } = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) } ) |
| 33 |
|
df-mpt |
|- ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) } |
| 34 |
32 33
|
eqtr4di |
|- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) } = ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) |
| 35 |
|
df-mpt |
|- ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) } |
| 36 |
8
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 37 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 38 |
|
ax-resscn |
|- RR C_ CC |
| 39 |
37 38
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 40 |
38
|
a1i |
|- ( ph -> RR C_ CC ) |
| 41 |
|
cncfmptc |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> ( ( F ` B ) - ( F ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 42 |
21 39 40 41
|
syl3anc |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( F ` B ) - ( F ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 43 |
25
|
feqmptd |
|- ( ph -> G = ( z e. ( A [,] B ) |-> ( G ` z ) ) ) |
| 44 |
43 5
|
eqeltrrd |
|- ( ph -> ( z e. ( A [,] B ) |-> ( G ` z ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 45 |
|
simpl |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
| 46 |
45
|
recnd |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 47 |
|
simpr |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( G ` z ) e. RR ) |
| 48 |
47
|
recnd |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( G ` z ) e. CC ) |
| 49 |
28
|
eqcomd |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. CC /\ ( G ` z ) e. CC ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) |
| 50 |
46 48 49
|
syl2anc |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) |
| 51 |
|
remulcl |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. RR ) |
| 52 |
50 51
|
eqeltrrd |
|- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) e. RR ) |
| 53 |
8 36 42 44 38 52
|
cncfmpt2ss |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 54 |
35 53
|
eqeltrrid |
|- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( F ` B ) - ( F ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( G ` z ) ) ) } e. ( ( A [,] B ) -cn-> RR ) ) |
| 55 |
34 54
|
eqeltrrd |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 56 |
25 16
|
ffvelcdmd |
|- ( ph -> ( G ` B ) e. RR ) |
| 57 |
25 19
|
ffvelcdmd |
|- ( ph -> ( G ` A ) e. RR ) |
| 58 |
56 57
|
resubcld |
|- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
| 60 |
59
|
recnd |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 61 |
11
|
ffvelcdmda |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` z ) e. RR ) |
| 62 |
61
|
recnd |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` z ) e. CC ) |
| 63 |
|
ovmpot |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. CC /\ ( F ` z ) e. CC ) -> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) |
| 64 |
60 62 63
|
syl2anc |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) |
| 65 |
64
|
eqeq2d |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) <-> w = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) |
| 66 |
65
|
pm5.32da |
|- ( ph -> ( ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) <-> ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) |
| 67 |
66
|
opabbidv |
|- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) } = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) } ) |
| 68 |
|
df-mpt |
|- ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) } |
| 69 |
67 68
|
eqtr4di |
|- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) } = ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) |
| 70 |
|
df-mpt |
|- ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) = { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) } |
| 71 |
|
cncfmptc |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> ( ( G ` B ) - ( G ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 72 |
58 39 40 71
|
syl3anc |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( G ` B ) - ( G ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 73 |
11
|
feqmptd |
|- ( ph -> F = ( z e. ( A [,] B ) |-> ( F ` z ) ) ) |
| 74 |
73 4
|
eqeltrrd |
|- ( ph -> ( z e. ( A [,] B ) |-> ( F ` z ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 75 |
|
simpl |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
| 76 |
75
|
recnd |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 77 |
|
simpr |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( F ` z ) e. RR ) |
| 78 |
77
|
recnd |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( F ` z ) e. CC ) |
| 79 |
63
|
eqcomd |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. CC /\ ( F ` z ) e. CC ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) |
| 80 |
76 78 79
|
syl2anc |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) |
| 81 |
|
remulcl |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) |
| 82 |
80 81
|
eqeltrrd |
|- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) e. RR ) |
| 83 |
8 36 72 74 38 82
|
cncfmpt2ss |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 84 |
70 83
|
eqeltrrid |
|- ( ph -> { <. z , w >. | ( z e. ( A [,] B ) /\ w = ( ( ( G ` B ) - ( G ` A ) ) ( u e. CC , v e. CC |-> ( u x. v ) ) ( F ` z ) ) ) } e. ( ( A [,] B ) -cn-> RR ) ) |
| 85 |
69 84
|
eqeltrrd |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 86 |
|
resubcl |
|- ( ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. RR /\ ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. RR ) |
| 87 |
8 9 55 85 38 86
|
cncfmpt2ss |
|- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 88 |
23 27
|
mulcld |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. CC ) |
| 89 |
59 61
|
remulcld |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) |
| 90 |
89
|
recnd |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. CC ) |
| 91 |
88 90
|
subcld |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. CC ) |
| 92 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 93 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 94 |
1 2 93
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 95 |
40 37 91 92 8 94
|
dvmptntr |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ) |
| 96 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 97 |
96
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 98 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 99 |
98
|
sseli |
|- ( z e. ( A (,) B ) -> z e. ( A [,] B ) ) |
| 100 |
99 88
|
sylan2 |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. CC ) |
| 101 |
|
ovexd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) e. _V ) |
| 102 |
99 27
|
sylan2 |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( G ` z ) e. CC ) |
| 103 |
|
fvexd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. _V ) |
| 104 |
43
|
oveq2d |
|- ( ph -> ( RR _D G ) = ( RR _D ( z e. ( A [,] B ) |-> ( G ` z ) ) ) ) |
| 105 |
|
dvf |
|- ( RR _D G ) : dom ( RR _D G ) --> CC |
| 106 |
7
|
feq2d |
|- ( ph -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) ) |
| 107 |
105 106
|
mpbii |
|- ( ph -> ( RR _D G ) : ( A (,) B ) --> CC ) |
| 108 |
107
|
feqmptd |
|- ( ph -> ( RR _D G ) = ( z e. ( A (,) B ) |-> ( ( RR _D G ) ` z ) ) ) |
| 109 |
40 37 27 92 8 94
|
dvmptntr |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( G ` z ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( G ` z ) ) ) ) |
| 110 |
104 108 109
|
3eqtr3rd |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( G ` z ) ) ) = ( z e. ( A (,) B ) |-> ( ( RR _D G ) ` z ) ) ) |
| 111 |
97 102 103 110 22
|
dvmptcmul |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) ) ) |
| 112 |
99 90
|
sylan2 |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. CC ) |
| 113 |
|
ovexd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) e. _V ) |
| 114 |
99 62
|
sylan2 |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( F ` z ) e. CC ) |
| 115 |
|
fvexd |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. _V ) |
| 116 |
73
|
oveq2d |
|- ( ph -> ( RR _D F ) = ( RR _D ( z e. ( A [,] B ) |-> ( F ` z ) ) ) ) |
| 117 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
| 118 |
6
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 119 |
117 118
|
mpbii |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 120 |
119
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( z e. ( A (,) B ) |-> ( ( RR _D F ) ` z ) ) ) |
| 121 |
40 37 62 92 8 94
|
dvmptntr |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( F ` z ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( F ` z ) ) ) ) |
| 122 |
116 120 121
|
3eqtr3rd |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( F ` z ) ) ) = ( z e. ( A (,) B ) |-> ( ( RR _D F ) ` z ) ) ) |
| 123 |
58
|
recnd |
|- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 124 |
97 114 115 122 123
|
dvmptcmul |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) |
| 125 |
97 100 101 111 112 113 124
|
dvmptsub |
|- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 126 |
95 125
|
eqtrd |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 127 |
126
|
dmeqd |
|- ( ph -> dom ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = dom ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 128 |
|
ovex |
|- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) e. _V |
| 129 |
|
eqid |
|- ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) |
| 130 |
128 129
|
dmmpti |
|- dom ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) = ( A (,) B ) |
| 131 |
127 130
|
eqtrdi |
|- ( ph -> dom ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( A (,) B ) ) |
| 132 |
17
|
recnd |
|- ( ph -> ( F ` B ) e. CC ) |
| 133 |
57
|
recnd |
|- ( ph -> ( G ` A ) e. CC ) |
| 134 |
132 133
|
mulcld |
|- ( ph -> ( ( F ` B ) x. ( G ` A ) ) e. CC ) |
| 135 |
20
|
recnd |
|- ( ph -> ( F ` A ) e. CC ) |
| 136 |
56
|
recnd |
|- ( ph -> ( G ` B ) e. CC ) |
| 137 |
135 136
|
mulcld |
|- ( ph -> ( ( F ` A ) x. ( G ` B ) ) e. CC ) |
| 138 |
135 133
|
mulcld |
|- ( ph -> ( ( F ` A ) x. ( G ` A ) ) e. CC ) |
| 139 |
134 137 138
|
nnncan2d |
|- ( ph -> ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 140 |
132 136
|
mulcld |
|- ( ph -> ( ( F ` B ) x. ( G ` B ) ) e. CC ) |
| 141 |
140 137 134
|
nnncan1d |
|- ( ph -> ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 142 |
139 141
|
eqtr4d |
|- ( ph -> ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) = ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) ) |
| 143 |
132 135 133
|
subdird |
|- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 144 |
123 135
|
mulcomd |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) = ( ( F ` A ) x. ( ( G ` B ) - ( G ` A ) ) ) ) |
| 145 |
135 136 133
|
subdid |
|- ( ph -> ( ( F ` A ) x. ( ( G ` B ) - ( G ` A ) ) ) = ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 146 |
144 145
|
eqtrd |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) = ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 147 |
143 146
|
oveq12d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) = ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) ) |
| 148 |
132 135 136
|
subdird |
|- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 149 |
123 132
|
mulcomd |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) = ( ( F ` B ) x. ( ( G ` B ) - ( G ` A ) ) ) ) |
| 150 |
132 136 133
|
subdid |
|- ( ph -> ( ( F ` B ) x. ( ( G ` B ) - ( G ` A ) ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) |
| 151 |
149 150
|
eqtrd |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) |
| 152 |
148 151
|
oveq12d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) = ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) ) |
| 153 |
142 147 152
|
3eqtr4d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 154 |
|
fveq2 |
|- ( z = A -> ( G ` z ) = ( G ` A ) ) |
| 155 |
154
|
oveq2d |
|- ( z = A -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) ) |
| 156 |
|
fveq2 |
|- ( z = A -> ( F ` z ) = ( F ` A ) ) |
| 157 |
156
|
oveq2d |
|- ( z = A -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) |
| 158 |
155 157
|
oveq12d |
|- ( z = A -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 159 |
|
eqid |
|- ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) = ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) |
| 160 |
|
ovex |
|- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. _V |
| 161 |
158 159 160
|
fvmpt3i |
|- ( A e. ( A [,] B ) -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 162 |
19 161
|
syl |
|- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 163 |
|
fveq2 |
|- ( z = B -> ( G ` z ) = ( G ` B ) ) |
| 164 |
163
|
oveq2d |
|- ( z = B -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) ) |
| 165 |
|
fveq2 |
|- ( z = B -> ( F ` z ) = ( F ` B ) ) |
| 166 |
165
|
oveq2d |
|- ( z = B -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) |
| 167 |
164 166
|
oveq12d |
|- ( z = B -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 168 |
167 159 160
|
fvmpt3i |
|- ( B e. ( A [,] B ) -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 169 |
16 168
|
syl |
|- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 170 |
153 162 169
|
3eqtr4d |
|- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) ) |
| 171 |
1 2 3 87 131 170
|
rolle |
|- ( ph -> E. x e. ( A (,) B ) ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 ) |
| 172 |
126
|
fveq1d |
|- ( ph -> ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = ( ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ` x ) ) |
| 173 |
|
fveq2 |
|- ( z = x -> ( ( RR _D G ) ` z ) = ( ( RR _D G ) ` x ) ) |
| 174 |
173
|
oveq2d |
|- ( z = x -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) ) |
| 175 |
|
fveq2 |
|- ( z = x -> ( ( RR _D F ) ` z ) = ( ( RR _D F ) ` x ) ) |
| 176 |
175
|
oveq2d |
|- ( z = x -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |
| 177 |
174 176
|
oveq12d |
|- ( z = x -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 178 |
177 129 128
|
fvmpt3i |
|- ( x e. ( A (,) B ) -> ( ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ` x ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 179 |
172 178
|
sylan9eq |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 180 |
179
|
eqeq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) = 0 ) ) |
| 181 |
22
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 182 |
107
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D G ) ` x ) e. CC ) |
| 183 |
181 182
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) e. CC ) |
| 184 |
123
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 185 |
119
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 186 |
184 185
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) e. CC ) |
| 187 |
183 186
|
subeq0ad |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) = 0 <-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 188 |
180 187
|
bitrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 189 |
188
|
rexbidva |
|- ( ph -> ( E. x e. ( A (,) B ) ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 190 |
171 189
|
mpbid |
|- ( ph -> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |