Step |
Hyp |
Ref |
Expression |
1 |
|
cn1lem.1 |
|- F : CC --> CC |
2 |
|
cn1lem.2 |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
3 |
|
simpr |
|- ( ( A e. CC /\ x e. RR+ ) -> x e. RR+ ) |
4 |
|
simpr |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> z e. CC ) |
5 |
|
simpll |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> A e. CC ) |
6 |
4 5 2
|
syl2anc |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
7 |
1
|
ffvelrni |
|- ( z e. CC -> ( F ` z ) e. CC ) |
8 |
4 7
|
syl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( F ` z ) e. CC ) |
9 |
1
|
ffvelrni |
|- ( A e. CC -> ( F ` A ) e. CC ) |
10 |
5 9
|
syl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( F ` A ) e. CC ) |
11 |
8 10
|
subcld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( F ` z ) - ( F ` A ) ) e. CC ) |
12 |
11
|
abscld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) e. RR ) |
13 |
4 5
|
subcld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( z - A ) e. CC ) |
14 |
13
|
abscld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( z - A ) ) e. RR ) |
15 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
16 |
15
|
ad2antlr |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> x e. RR ) |
17 |
|
lelttr |
|- ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) e. RR /\ ( abs ` ( z - A ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) /\ ( abs ` ( z - A ) ) < x ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
18 |
12 14 16 17
|
syl3anc |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) /\ ( abs ` ( z - A ) ) < x ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
19 |
6 18
|
mpand |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
20 |
19
|
ralrimiva |
|- ( ( A e. CC /\ x e. RR+ ) -> A. z e. CC ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
21 |
|
breq2 |
|- ( y = x -> ( ( abs ` ( z - A ) ) < y <-> ( abs ` ( z - A ) ) < x ) ) |
22 |
21
|
rspceaimv |
|- ( ( x e. RR+ /\ A. z e. CC ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
23 |
3 20 22
|
syl2anc |
|- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |