| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cn1lem.1 |
|- F : CC --> CC |
| 2 |
|
cn1lem.2 |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 3 |
|
simpr |
|- ( ( A e. CC /\ x e. RR+ ) -> x e. RR+ ) |
| 4 |
|
simpr |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> z e. CC ) |
| 5 |
|
simpll |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> A e. CC ) |
| 6 |
4 5 2
|
syl2anc |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 7 |
1
|
ffvelcdmi |
|- ( z e. CC -> ( F ` z ) e. CC ) |
| 8 |
4 7
|
syl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( F ` z ) e. CC ) |
| 9 |
1
|
ffvelcdmi |
|- ( A e. CC -> ( F ` A ) e. CC ) |
| 10 |
5 9
|
syl |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( F ` A ) e. CC ) |
| 11 |
8 10
|
subcld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( F ` z ) - ( F ` A ) ) e. CC ) |
| 12 |
11
|
abscld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) e. RR ) |
| 13 |
4 5
|
subcld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( z - A ) e. CC ) |
| 14 |
13
|
abscld |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( abs ` ( z - A ) ) e. RR ) |
| 15 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 16 |
15
|
ad2antlr |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> x e. RR ) |
| 17 |
|
lelttr |
|- ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) e. RR /\ ( abs ` ( z - A ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) /\ ( abs ` ( z - A ) ) < x ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 18 |
12 14 16 17
|
syl3anc |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( ( abs ` ( ( F ` z ) - ( F ` A ) ) ) <_ ( abs ` ( z - A ) ) /\ ( abs ` ( z - A ) ) < x ) -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 19 |
6 18
|
mpand |
|- ( ( ( A e. CC /\ x e. RR+ ) /\ z e. CC ) -> ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 20 |
19
|
ralrimiva |
|- ( ( A e. CC /\ x e. RR+ ) -> A. z e. CC ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 21 |
|
breq2 |
|- ( y = x -> ( ( abs ` ( z - A ) ) < y <-> ( abs ` ( z - A ) ) < x ) ) |
| 22 |
21
|
rspceaimv |
|- ( ( x e. RR+ /\ A. z e. CC ( ( abs ` ( z - A ) ) < x -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |
| 23 |
3 20 22
|
syl2anc |
|- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` A ) ) ) < x ) ) |