Step |
Hyp |
Ref |
Expression |
1 |
|
cnaddabl.g |
|- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
2 |
|
cnex |
|- CC e. _V |
3 |
1
|
grpbase |
|- ( CC e. _V -> CC = ( Base ` G ) ) |
4 |
2 3
|
ax-mp |
|- CC = ( Base ` G ) |
5 |
|
addex |
|- + e. _V |
6 |
1
|
grpplusg |
|- ( + e. _V -> + = ( +g ` G ) ) |
7 |
5 6
|
ax-mp |
|- + = ( +g ` G ) |
8 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
9 |
|
addass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
10 |
|
0cn |
|- 0 e. CC |
11 |
|
addid2 |
|- ( x e. CC -> ( 0 + x ) = x ) |
12 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
13 |
|
addcom |
|- ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) ) |
14 |
12 13
|
mpdan |
|- ( x e. CC -> ( x + -u x ) = ( -u x + x ) ) |
15 |
|
negid |
|- ( x e. CC -> ( x + -u x ) = 0 ) |
16 |
14 15
|
eqtr3d |
|- ( x e. CC -> ( -u x + x ) = 0 ) |
17 |
4 7 8 9 10 11 12 16
|
isgrpi |
|- G e. Grp |
18 |
|
addcom |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) ) |
19 |
17 4 7 18
|
isabli |
|- G e. Abel |