Metamath Proof Explorer


Theorem cnaddabl

Description: The complex numbers are an Abelian group under addition. This version of cnaddablx hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring . (Contributed by NM, 20-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypothesis cnaddabl.g
|- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. }
Assertion cnaddabl
|- G e. Abel

Proof

Step Hyp Ref Expression
1 cnaddabl.g
 |-  G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. }
2 cnex
 |-  CC e. _V
3 1 grpbase
 |-  ( CC e. _V -> CC = ( Base ` G ) )
4 2 3 ax-mp
 |-  CC = ( Base ` G )
5 addex
 |-  + e. _V
6 1 grpplusg
 |-  ( + e. _V -> + = ( +g ` G ) )
7 5 6 ax-mp
 |-  + = ( +g ` G )
8 addcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC )
9 addass
 |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) )
10 0cn
 |-  0 e. CC
11 addid2
 |-  ( x e. CC -> ( 0 + x ) = x )
12 negcl
 |-  ( x e. CC -> -u x e. CC )
13 addcom
 |-  ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) )
14 12 13 mpdan
 |-  ( x e. CC -> ( x + -u x ) = ( -u x + x ) )
15 negid
 |-  ( x e. CC -> ( x + -u x ) = 0 )
16 14 15 eqtr3d
 |-  ( x e. CC -> ( -u x + x ) = 0 )
17 4 7 8 9 10 11 12 16 isgrpi
 |-  G e. Grp
18 addcom
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) )
19 17 4 7 18 isabli
 |-  G e. Abel