| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnex |  |-  CC e. _V | 
						
							| 2 |  | ax-addf |  |-  + : ( CC X. CC ) --> CC | 
						
							| 3 |  | addass |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) | 
						
							| 4 |  | 0cn |  |-  0 e. CC | 
						
							| 5 |  | addlid |  |-  ( x e. CC -> ( 0 + x ) = x ) | 
						
							| 6 |  | negcl |  |-  ( x e. CC -> -u x e. CC ) | 
						
							| 7 |  | addcom |  |-  ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) ) | 
						
							| 8 | 6 7 | mpdan |  |-  ( x e. CC -> ( x + -u x ) = ( -u x + x ) ) | 
						
							| 9 |  | negid |  |-  ( x e. CC -> ( x + -u x ) = 0 ) | 
						
							| 10 | 8 9 | eqtr3d |  |-  ( x e. CC -> ( -u x + x ) = 0 ) | 
						
							| 11 | 1 2 3 4 5 6 10 | isgrpoi |  |-  + e. GrpOp | 
						
							| 12 | 2 | fdmi |  |-  dom + = ( CC X. CC ) | 
						
							| 13 |  | addcom |  |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) ) | 
						
							| 14 | 11 12 13 | isabloi |  |-  + e. AbelOp |