Step |
Hyp |
Ref |
Expression |
1 |
|
cnaddablx.g |
|- G = { <. 1 , CC >. , <. 2 , + >. } |
2 |
|
cnex |
|- CC e. _V |
3 |
|
addex |
|- + e. _V |
4 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
5 |
|
addass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
6 |
|
0cn |
|- 0 e. CC |
7 |
|
addid2 |
|- ( x e. CC -> ( 0 + x ) = x ) |
8 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
9 |
|
addcom |
|- ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) ) |
10 |
8 9
|
mpdan |
|- ( x e. CC -> ( x + -u x ) = ( -u x + x ) ) |
11 |
|
negid |
|- ( x e. CC -> ( x + -u x ) = 0 ) |
12 |
10 11
|
eqtr3d |
|- ( x e. CC -> ( -u x + x ) = 0 ) |
13 |
2 3 1 4 5 6 7 8 12
|
isgrpix |
|- G e. Grp |
14 |
2 3 1
|
grpbasex |
|- CC = ( Base ` G ) |
15 |
2 3 1
|
grpplusgx |
|- + = ( +g ` G ) |
16 |
|
addcom |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) ) |
17 |
13 14 15 16
|
isabli |
|- G e. Abel |