Metamath Proof Explorer


Theorem cnaddablx

Description: The complex numbers are an Abelian group under addition. This version of cnaddabl shows the explicit structure "scaffold" we chose for the definition for Abelian groups. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use cnaddabl instead. (New usage is discouraged.) (Contributed by NM, 18-Oct-2012)

Ref Expression
Hypothesis cnaddablx.g
|- G = { <. 1 , CC >. , <. 2 , + >. }
Assertion cnaddablx
|- G e. Abel

Proof

Step Hyp Ref Expression
1 cnaddablx.g
 |-  G = { <. 1 , CC >. , <. 2 , + >. }
2 cnex
 |-  CC e. _V
3 addex
 |-  + e. _V
4 addcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC )
5 addass
 |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) )
6 0cn
 |-  0 e. CC
7 addid2
 |-  ( x e. CC -> ( 0 + x ) = x )
8 negcl
 |-  ( x e. CC -> -u x e. CC )
9 addcom
 |-  ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) )
10 8 9 mpdan
 |-  ( x e. CC -> ( x + -u x ) = ( -u x + x ) )
11 negid
 |-  ( x e. CC -> ( x + -u x ) = 0 )
12 10 11 eqtr3d
 |-  ( x e. CC -> ( -u x + x ) = 0 )
13 2 3 1 4 5 6 7 8 12 isgrpix
 |-  G e. Grp
14 2 3 1 grpbasex
 |-  CC = ( Base ` G )
15 2 3 1 grpplusgx
 |-  + = ( +g ` G )
16 addcom
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) )
17 13 14 15 16 isabli
 |-  G e. Abel