| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnaddabl.g |  |-  G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } | 
						
							| 2 |  | 0cn |  |-  0 e. CC | 
						
							| 3 |  | cnex |  |-  CC e. _V | 
						
							| 4 | 1 | grpbase |  |-  ( CC e. _V -> CC = ( Base ` G ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  CC = ( Base ` G ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 |  | addex |  |-  + e. _V | 
						
							| 8 | 1 | grpplusg |  |-  ( + e. _V -> + = ( +g ` G ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  + = ( +g ` G ) | 
						
							| 10 |  | id |  |-  ( 0 e. CC -> 0 e. CC ) | 
						
							| 11 |  | addlid |  |-  ( x e. CC -> ( 0 + x ) = x ) | 
						
							| 12 | 11 | adantl |  |-  ( ( 0 e. CC /\ x e. CC ) -> ( 0 + x ) = x ) | 
						
							| 13 |  | addrid |  |-  ( x e. CC -> ( x + 0 ) = x ) | 
						
							| 14 | 13 | adantl |  |-  ( ( 0 e. CC /\ x e. CC ) -> ( x + 0 ) = x ) | 
						
							| 15 | 5 6 9 10 12 14 | ismgmid2 |  |-  ( 0 e. CC -> 0 = ( 0g ` G ) ) | 
						
							| 16 | 2 15 | ax-mp |  |-  0 = ( 0g ` G ) | 
						
							| 17 | 16 | eqcomi |  |-  ( 0g ` G ) = 0 |