Step |
Hyp |
Ref |
Expression |
1 |
|
cnaddabl.g |
|- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
2 |
|
negid |
|- ( A e. CC -> ( A + -u A ) = 0 ) |
3 |
1
|
cnaddabl |
|- G e. Abel |
4 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
5 |
3 4
|
ax-mp |
|- G e. Grp |
6 |
|
id |
|- ( A e. CC -> A e. CC ) |
7 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
8 |
|
cnex |
|- CC e. _V |
9 |
1
|
grpbase |
|- ( CC e. _V -> CC = ( Base ` G ) ) |
10 |
8 9
|
ax-mp |
|- CC = ( Base ` G ) |
11 |
|
addex |
|- + e. _V |
12 |
1
|
grpplusg |
|- ( + e. _V -> + = ( +g ` G ) ) |
13 |
11 12
|
ax-mp |
|- + = ( +g ` G ) |
14 |
1
|
cnaddid |
|- ( 0g ` G ) = 0 |
15 |
14
|
eqcomi |
|- 0 = ( 0g ` G ) |
16 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
17 |
10 13 15 16
|
grpinvid1 |
|- ( ( G e. Grp /\ A e. CC /\ -u A e. CC ) -> ( ( ( invg ` G ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
18 |
5 6 7 17
|
mp3an2i |
|- ( A e. CC -> ( ( ( invg ` G ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
19 |
2 18
|
mpbird |
|- ( A e. CC -> ( ( invg ` G ) ` A ) = -u A ) |