Metamath Proof Explorer


Theorem cnaddinv

Description: Value of the group inverse of complex number addition. See also cnfldneg . (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by AV, 26-Aug-2021) (New usage is discouraged.)

Ref Expression
Hypothesis cnaddabl.g
|- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. }
Assertion cnaddinv
|- ( A e. CC -> ( ( invg ` G ) ` A ) = -u A )

Proof

Step Hyp Ref Expression
1 cnaddabl.g
 |-  G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. }
2 negid
 |-  ( A e. CC -> ( A + -u A ) = 0 )
3 1 cnaddabl
 |-  G e. Abel
4 ablgrp
 |-  ( G e. Abel -> G e. Grp )
5 3 4 ax-mp
 |-  G e. Grp
6 id
 |-  ( A e. CC -> A e. CC )
7 negcl
 |-  ( A e. CC -> -u A e. CC )
8 cnex
 |-  CC e. _V
9 1 grpbase
 |-  ( CC e. _V -> CC = ( Base ` G ) )
10 8 9 ax-mp
 |-  CC = ( Base ` G )
11 addex
 |-  + e. _V
12 1 grpplusg
 |-  ( + e. _V -> + = ( +g ` G ) )
13 11 12 ax-mp
 |-  + = ( +g ` G )
14 1 cnaddid
 |-  ( 0g ` G ) = 0
15 14 eqcomi
 |-  0 = ( 0g ` G )
16 eqid
 |-  ( invg ` G ) = ( invg ` G )
17 10 13 15 16 grpinvid1
 |-  ( ( G e. Grp /\ A e. CC /\ -u A e. CC ) -> ( ( ( invg ` G ) ` A ) = -u A <-> ( A + -u A ) = 0 ) )
18 5 6 7 17 mp3an2i
 |-  ( A e. CC -> ( ( ( invg ` G ) ` A ) = -u A <-> ( A + -u A ) = 0 ) )
19 2 18 mpbird
 |-  ( A e. CC -> ( ( invg ` G ) ` A ) = -u A )