| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnaddabl.g |  |-  G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } | 
						
							| 2 |  | negid |  |-  ( A e. CC -> ( A + -u A ) = 0 ) | 
						
							| 3 | 1 | cnaddabl |  |-  G e. Abel | 
						
							| 4 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 5 | 3 4 | ax-mp |  |-  G e. Grp | 
						
							| 6 |  | id |  |-  ( A e. CC -> A e. CC ) | 
						
							| 7 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 8 |  | cnex |  |-  CC e. _V | 
						
							| 9 | 1 | grpbase |  |-  ( CC e. _V -> CC = ( Base ` G ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  CC = ( Base ` G ) | 
						
							| 11 |  | addex |  |-  + e. _V | 
						
							| 12 | 1 | grpplusg |  |-  ( + e. _V -> + = ( +g ` G ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  + = ( +g ` G ) | 
						
							| 14 | 1 | cnaddid |  |-  ( 0g ` G ) = 0 | 
						
							| 15 | 14 | eqcomi |  |-  0 = ( 0g ` G ) | 
						
							| 16 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 17 | 10 13 15 16 | grpinvid1 |  |-  ( ( G e. Grp /\ A e. CC /\ -u A e. CC ) -> ( ( ( invg ` G ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) | 
						
							| 18 | 5 6 7 17 | mp3an2i |  |-  ( A e. CC -> ( ( ( invg ` G ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) | 
						
							| 19 | 2 18 | mpbird |  |-  ( A e. CC -> ( ( invg ` G ) ` A ) = -u A ) |