Step |
Hyp |
Ref |
Expression |
1 |
|
cnbdibl.a |
|- ( ph -> A e. dom vol ) |
2 |
|
cnbdibl.va |
|- ( ph -> ( vol ` A ) e. RR ) |
3 |
|
cnbdibl.f |
|- ( ph -> F e. ( A -cn-> CC ) ) |
4 |
|
cnbdibl.bd |
|- ( ph -> E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) |
5 |
|
cnmbf |
|- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> F e. MblFn ) |
6 |
1 3 5
|
syl2anc |
|- ( ph -> F e. MblFn ) |
7 |
|
cncff |
|- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
8 |
|
fdm |
|- ( F : A --> CC -> dom F = A ) |
9 |
3 7 8
|
3syl |
|- ( ph -> dom F = A ) |
10 |
9
|
fveq2d |
|- ( ph -> ( vol ` dom F ) = ( vol ` A ) ) |
11 |
10 2
|
eqeltrd |
|- ( ph -> ( vol ` dom F ) e. RR ) |
12 |
|
bddibl |
|- ( ( F e. MblFn /\ ( vol ` dom F ) e. RR /\ E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) -> F e. L^1 ) |
13 |
6 11 4 12
|
syl3anc |
|- ( ph -> F e. L^1 ) |