Step |
Hyp |
Ref |
Expression |
1 |
|
cnblcld.1 |
|- D = ( abs o. - ) |
2 |
|
df-3an |
|- ( ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) < R ) <-> ( ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) < R ) ) |
3 |
|
abscl |
|- ( x e. CC -> ( abs ` x ) e. RR ) |
4 |
|
absge0 |
|- ( x e. CC -> 0 <_ ( abs ` x ) ) |
5 |
3 4
|
jca |
|- ( x e. CC -> ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) ) ) |
6 |
5
|
adantl |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) ) ) |
7 |
6
|
biantrurd |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) < R <-> ( ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) < R ) ) ) |
8 |
2 7
|
bitr4id |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) < R ) <-> ( abs ` x ) < R ) ) |
9 |
|
0re |
|- 0 e. RR |
10 |
|
simpl |
|- ( ( R e. RR* /\ x e. CC ) -> R e. RR* ) |
11 |
|
elico2 |
|- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` x ) e. ( 0 [,) R ) <-> ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) < R ) ) ) |
12 |
9 10 11
|
sylancr |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,) R ) <-> ( ( abs ` x ) e. RR /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) < R ) ) ) |
13 |
|
0cn |
|- 0 e. CC |
14 |
1
|
cnmetdval |
|- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( 0 - x ) ) ) |
15 |
|
abssub |
|- ( ( 0 e. CC /\ x e. CC ) -> ( abs ` ( 0 - x ) ) = ( abs ` ( x - 0 ) ) ) |
16 |
14 15
|
eqtrd |
|- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
17 |
13 16
|
mpan |
|- ( x e. CC -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
18 |
|
subid1 |
|- ( x e. CC -> ( x - 0 ) = x ) |
19 |
18
|
fveq2d |
|- ( x e. CC -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
20 |
17 19
|
eqtrd |
|- ( x e. CC -> ( 0 D x ) = ( abs ` x ) ) |
21 |
20
|
adantl |
|- ( ( R e. RR* /\ x e. CC ) -> ( 0 D x ) = ( abs ` x ) ) |
22 |
21
|
breq1d |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( 0 D x ) < R <-> ( abs ` x ) < R ) ) |
23 |
8 12 22
|
3bitr4d |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,) R ) <-> ( 0 D x ) < R ) ) |
24 |
23
|
pm5.32da |
|- ( R e. RR* -> ( ( x e. CC /\ ( abs ` x ) e. ( 0 [,) R ) ) <-> ( x e. CC /\ ( 0 D x ) < R ) ) ) |
25 |
|
absf |
|- abs : CC --> RR |
26 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
27 |
25 26
|
ax-mp |
|- abs Fn CC |
28 |
|
elpreima |
|- ( abs Fn CC -> ( x e. ( `' abs " ( 0 [,) R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,) R ) ) ) ) |
29 |
27 28
|
mp1i |
|- ( R e. RR* -> ( x e. ( `' abs " ( 0 [,) R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,) R ) ) ) ) |
30 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
31 |
1 30
|
eqeltri |
|- D e. ( *Met ` CC ) |
32 |
|
elbl |
|- ( ( D e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR* ) -> ( x e. ( 0 ( ball ` D ) R ) <-> ( x e. CC /\ ( 0 D x ) < R ) ) ) |
33 |
31 13 32
|
mp3an12 |
|- ( R e. RR* -> ( x e. ( 0 ( ball ` D ) R ) <-> ( x e. CC /\ ( 0 D x ) < R ) ) ) |
34 |
24 29 33
|
3bitr4d |
|- ( R e. RR* -> ( x e. ( `' abs " ( 0 [,) R ) ) <-> x e. ( 0 ( ball ` D ) R ) ) ) |
35 |
34
|
eqrdv |
|- ( R e. RR* -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` D ) R ) ) |