Step |
Hyp |
Ref |
Expression |
1 |
|
cnblcld.1 |
|- D = ( abs o. - ) |
2 |
|
absf |
|- abs : CC --> RR |
3 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
4 |
|
elpreima |
|- ( abs Fn CC -> ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) ) ) |
5 |
2 3 4
|
mp2b |
|- ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) ) |
6 |
|
df-3an |
|- ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) <-> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) <_ R ) ) |
7 |
|
abscl |
|- ( x e. CC -> ( abs ` x ) e. RR ) |
8 |
7
|
rexrd |
|- ( x e. CC -> ( abs ` x ) e. RR* ) |
9 |
|
absge0 |
|- ( x e. CC -> 0 <_ ( abs ` x ) ) |
10 |
8 9
|
jca |
|- ( x e. CC -> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) ) |
11 |
10
|
adantl |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) ) |
12 |
11
|
biantrurd |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) <_ R <-> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) <_ R ) ) ) |
13 |
6 12
|
bitr4id |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) <-> ( abs ` x ) <_ R ) ) |
14 |
|
0xr |
|- 0 e. RR* |
15 |
|
simpl |
|- ( ( R e. RR* /\ x e. CC ) -> R e. RR* ) |
16 |
|
elicc1 |
|- ( ( 0 e. RR* /\ R e. RR* ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) ) ) |
17 |
14 15 16
|
sylancr |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) ) ) |
18 |
|
0cn |
|- 0 e. CC |
19 |
1
|
cnmetdval |
|- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( 0 - x ) ) ) |
20 |
|
abssub |
|- ( ( 0 e. CC /\ x e. CC ) -> ( abs ` ( 0 - x ) ) = ( abs ` ( x - 0 ) ) ) |
21 |
19 20
|
eqtrd |
|- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
22 |
18 21
|
mpan |
|- ( x e. CC -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
23 |
|
subid1 |
|- ( x e. CC -> ( x - 0 ) = x ) |
24 |
23
|
fveq2d |
|- ( x e. CC -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
25 |
22 24
|
eqtrd |
|- ( x e. CC -> ( 0 D x ) = ( abs ` x ) ) |
26 |
25
|
adantl |
|- ( ( R e. RR* /\ x e. CC ) -> ( 0 D x ) = ( abs ` x ) ) |
27 |
26
|
breq1d |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( 0 D x ) <_ R <-> ( abs ` x ) <_ R ) ) |
28 |
13 17 27
|
3bitr4d |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( 0 D x ) <_ R ) ) |
29 |
28
|
pm5.32da |
|- ( R e. RR* -> ( ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) <-> ( x e. CC /\ ( 0 D x ) <_ R ) ) ) |
30 |
5 29
|
syl5bb |
|- ( R e. RR* -> ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( 0 D x ) <_ R ) ) ) |
31 |
30
|
abbi2dv |
|- ( R e. RR* -> ( `' abs " ( 0 [,] R ) ) = { x | ( x e. CC /\ ( 0 D x ) <_ R ) } ) |
32 |
|
df-rab |
|- { x e. CC | ( 0 D x ) <_ R } = { x | ( x e. CC /\ ( 0 D x ) <_ R ) } |
33 |
31 32
|
eqtr4di |
|- ( R e. RR* -> ( `' abs " ( 0 [,] R ) ) = { x e. CC | ( 0 D x ) <_ R } ) |