| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnblcld.1 |
|- D = ( abs o. - ) |
| 2 |
|
absf |
|- abs : CC --> RR |
| 3 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
| 4 |
|
elpreima |
|- ( abs Fn CC -> ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) ) ) |
| 5 |
2 3 4
|
mp2b |
|- ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) ) |
| 6 |
|
df-3an |
|- ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) <-> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) <_ R ) ) |
| 7 |
|
abscl |
|- ( x e. CC -> ( abs ` x ) e. RR ) |
| 8 |
7
|
rexrd |
|- ( x e. CC -> ( abs ` x ) e. RR* ) |
| 9 |
|
absge0 |
|- ( x e. CC -> 0 <_ ( abs ` x ) ) |
| 10 |
8 9
|
jca |
|- ( x e. CC -> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) ) |
| 11 |
10
|
adantl |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) ) |
| 12 |
11
|
biantrurd |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) <_ R <-> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) <_ R ) ) ) |
| 13 |
6 12
|
bitr4id |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) <-> ( abs ` x ) <_ R ) ) |
| 14 |
|
0xr |
|- 0 e. RR* |
| 15 |
|
simpl |
|- ( ( R e. RR* /\ x e. CC ) -> R e. RR* ) |
| 16 |
|
elicc1 |
|- ( ( 0 e. RR* /\ R e. RR* ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) ) ) |
| 17 |
14 15 16
|
sylancr |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) ) ) |
| 18 |
|
0cn |
|- 0 e. CC |
| 19 |
1
|
cnmetdval |
|- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( 0 - x ) ) ) |
| 20 |
|
abssub |
|- ( ( 0 e. CC /\ x e. CC ) -> ( abs ` ( 0 - x ) ) = ( abs ` ( x - 0 ) ) ) |
| 21 |
19 20
|
eqtrd |
|- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
| 22 |
18 21
|
mpan |
|- ( x e. CC -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
| 23 |
|
subid1 |
|- ( x e. CC -> ( x - 0 ) = x ) |
| 24 |
23
|
fveq2d |
|- ( x e. CC -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
| 25 |
22 24
|
eqtrd |
|- ( x e. CC -> ( 0 D x ) = ( abs ` x ) ) |
| 26 |
25
|
adantl |
|- ( ( R e. RR* /\ x e. CC ) -> ( 0 D x ) = ( abs ` x ) ) |
| 27 |
26
|
breq1d |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( 0 D x ) <_ R <-> ( abs ` x ) <_ R ) ) |
| 28 |
13 17 27
|
3bitr4d |
|- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( 0 D x ) <_ R ) ) |
| 29 |
28
|
pm5.32da |
|- ( R e. RR* -> ( ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) <-> ( x e. CC /\ ( 0 D x ) <_ R ) ) ) |
| 30 |
5 29
|
bitrid |
|- ( R e. RR* -> ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( 0 D x ) <_ R ) ) ) |
| 31 |
30
|
eqabdv |
|- ( R e. RR* -> ( `' abs " ( 0 [,] R ) ) = { x | ( x e. CC /\ ( 0 D x ) <_ R ) } ) |
| 32 |
|
df-rab |
|- { x e. CC | ( 0 D x ) <_ R } = { x | ( x e. CC /\ ( 0 D x ) <_ R ) } |
| 33 |
31 32
|
eqtr4di |
|- ( R e. RR* -> ( `' abs " ( 0 [,] R ) ) = { x e. CC | ( 0 D x ) <_ R } ) |