Step |
Hyp |
Ref |
Expression |
1 |
|
cnbn.6 |
|- U = <. <. + , x. >. , abs >. |
2 |
1
|
cnnv |
|- U e. NrmCVec |
3 |
|
eqid |
|- <. <. + , x. >. , abs >. = <. <. + , x. >. , abs >. |
4 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
5 |
3 4
|
cnims |
|- ( abs o. - ) = ( IndMet ` <. <. + , x. >. , abs >. ) |
6 |
5
|
eqcomi |
|- ( IndMet ` <. <. + , x. >. , abs >. ) = ( abs o. - ) |
7 |
6
|
cncmet |
|- ( IndMet ` <. <. + , x. >. , abs >. ) e. ( CMet ` CC ) |
8 |
1
|
cnnvba |
|- CC = ( BaseSet ` U ) |
9 |
1
|
fveq2i |
|- ( IndMet ` U ) = ( IndMet ` <. <. + , x. >. , abs >. ) |
10 |
9
|
eqcomi |
|- ( IndMet ` <. <. + , x. >. , abs >. ) = ( IndMet ` U ) |
11 |
8 10
|
iscbn |
|- ( U e. CBan <-> ( U e. NrmCVec /\ ( IndMet ` <. <. + , x. >. , abs >. ) e. ( CMet ` CC ) ) ) |
12 |
2 7 11
|
mpbir2an |
|- U e. CBan |