Description: The only complete subfields of the complex numbers are RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resscdrg.1 | |- F = ( CCfld |`s K ) |
|
Assertion | cncdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. { RR , CC } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resscdrg.1 | |- F = ( CCfld |`s K ) |
|
2 | simp1 | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. ( SubRing ` CCfld ) ) |
|
3 | 1 | resscdrg | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> RR C_ K ) |
4 | cnsubrg | |- ( ( K e. ( SubRing ` CCfld ) /\ RR C_ K ) -> K e. { RR , CC } ) |
|
5 | 2 3 4 | syl2anc | |- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. { RR , CC } ) |