Metamath Proof Explorer


Theorem cncdrg

Description: The only complete subfields of the complex numbers are RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis resscdrg.1
|- F = ( CCfld |`s K )
Assertion cncdrg
|- ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. { RR , CC } )

Proof

Step Hyp Ref Expression
1 resscdrg.1
 |-  F = ( CCfld |`s K )
2 simp1
 |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. ( SubRing ` CCfld ) )
3 1 resscdrg
 |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> RR C_ K )
4 cnsubrg
 |-  ( ( K e. ( SubRing ` CCfld ) /\ RR C_ K ) -> K e. { RR , CC } )
5 2 3 4 syl2anc
 |-  ( ( K e. ( SubRing ` CCfld ) /\ F e. DivRing /\ F e. CMetSp ) -> K e. { RR , CC } )