| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncfcompt.bcn |  |-  ( ph -> ( x e. A |-> B ) e. ( A -cn-> C ) ) | 
						
							| 2 |  | cncfcompt.f |  |-  ( ph -> F e. ( C -cn-> D ) ) | 
						
							| 3 |  | cncff |  |-  ( F e. ( C -cn-> D ) -> F : C --> D ) | 
						
							| 4 | 2 3 | syl |  |-  ( ph -> F : C --> D ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ph /\ x e. A ) -> F : C --> D ) | 
						
							| 6 |  | cncff |  |-  ( ( x e. A |-> B ) e. ( A -cn-> C ) -> ( x e. A |-> B ) : A --> C ) | 
						
							| 7 | 1 6 | syl |  |-  ( ph -> ( x e. A |-> B ) : A --> C ) | 
						
							| 8 | 7 | fvmptelcdm |  |-  ( ( ph /\ x e. A ) -> B e. C ) | 
						
							| 9 | 5 8 | ffvelcdmd |  |-  ( ( ph /\ x e. A ) -> ( F ` B ) e. D ) | 
						
							| 10 | 9 | fmpttd |  |-  ( ph -> ( x e. A |-> ( F ` B ) ) : A --> D ) | 
						
							| 11 |  | cncfrss2 |  |-  ( F e. ( C -cn-> D ) -> D C_ CC ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> D C_ CC ) | 
						
							| 13 |  | eqidd |  |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) | 
						
							| 14 | 4 | feqmptd |  |-  ( ph -> F = ( y e. C |-> ( F ` y ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( y = B -> ( F ` y ) = ( F ` B ) ) | 
						
							| 16 | 8 13 14 15 | fmptco |  |-  ( ph -> ( F o. ( x e. A |-> B ) ) = ( x e. A |-> ( F ` B ) ) ) | 
						
							| 17 |  | ssid |  |-  CC C_ CC | 
						
							| 18 |  | cncfss |  |-  ( ( D C_ CC /\ CC C_ CC ) -> ( C -cn-> D ) C_ ( C -cn-> CC ) ) | 
						
							| 19 | 12 17 18 | sylancl |  |-  ( ph -> ( C -cn-> D ) C_ ( C -cn-> CC ) ) | 
						
							| 20 | 19 2 | sseldd |  |-  ( ph -> F e. ( C -cn-> CC ) ) | 
						
							| 21 | 1 20 | cncfco |  |-  ( ph -> ( F o. ( x e. A |-> B ) ) e. ( A -cn-> CC ) ) | 
						
							| 22 | 16 21 | eqeltrrd |  |-  ( ph -> ( x e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) | 
						
							| 23 |  | cncfcdm |  |-  ( ( D C_ CC /\ ( x e. A |-> ( F ` B ) ) e. ( A -cn-> CC ) ) -> ( ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) <-> ( x e. A |-> ( F ` B ) ) : A --> D ) ) | 
						
							| 24 | 12 22 23 | syl2anc |  |-  ( ph -> ( ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) <-> ( x e. A |-> ( F ` B ) ) : A --> D ) ) | 
						
							| 25 | 10 24 | mpbird |  |-  ( ph -> ( x e. A |-> ( F ` B ) ) e. ( A -cn-> D ) ) |