| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfcompt2.xph |
|- F/ x ph |
| 2 |
|
cncfcompt2.ab |
|- ( ph -> ( x e. A |-> R ) e. ( A -cn-> B ) ) |
| 3 |
|
cncfcompt2.cd |
|- ( ph -> ( y e. C |-> S ) e. ( C -cn-> E ) ) |
| 4 |
|
cncfcompt2.bc |
|- ( ph -> B C_ C ) |
| 5 |
|
cncfcompt2.st |
|- ( y = R -> S = T ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ x e. A ) -> B C_ C ) |
| 7 |
|
cncff |
|- ( ( x e. A |-> R ) e. ( A -cn-> B ) -> ( x e. A |-> R ) : A --> B ) |
| 8 |
2 7
|
syl |
|- ( ph -> ( x e. A |-> R ) : A --> B ) |
| 9 |
8
|
fvmptelcdm |
|- ( ( ph /\ x e. A ) -> R e. B ) |
| 10 |
6 9
|
sseldd |
|- ( ( ph /\ x e. A ) -> R e. C ) |
| 11 |
10
|
ex |
|- ( ph -> ( x e. A -> R e. C ) ) |
| 12 |
1 11
|
ralrimi |
|- ( ph -> A. x e. A R e. C ) |
| 13 |
|
eqidd |
|- ( ph -> ( x e. A |-> R ) = ( x e. A |-> R ) ) |
| 14 |
|
eqidd |
|- ( ph -> ( y e. C |-> S ) = ( y e. C |-> S ) ) |
| 15 |
12 13 14 5
|
fmptcof |
|- ( ph -> ( ( y e. C |-> S ) o. ( x e. A |-> R ) ) = ( x e. A |-> T ) ) |
| 16 |
15
|
eqcomd |
|- ( ph -> ( x e. A |-> T ) = ( ( y e. C |-> S ) o. ( x e. A |-> R ) ) ) |
| 17 |
|
cncfrss |
|- ( ( y e. C |-> S ) e. ( C -cn-> E ) -> C C_ CC ) |
| 18 |
3 17
|
syl |
|- ( ph -> C C_ CC ) |
| 19 |
|
cncfss |
|- ( ( B C_ C /\ C C_ CC ) -> ( A -cn-> B ) C_ ( A -cn-> C ) ) |
| 20 |
4 18 19
|
syl2anc |
|- ( ph -> ( A -cn-> B ) C_ ( A -cn-> C ) ) |
| 21 |
20 2
|
sseldd |
|- ( ph -> ( x e. A |-> R ) e. ( A -cn-> C ) ) |
| 22 |
21 3
|
cncfco |
|- ( ph -> ( ( y e. C |-> S ) o. ( x e. A |-> R ) ) e. ( A -cn-> E ) ) |
| 23 |
16 22
|
eqeltrd |
|- ( ph -> ( x e. A |-> T ) e. ( A -cn-> E ) ) |