Step |
Hyp |
Ref |
Expression |
1 |
|
cncfioobdlem.a |
|- ( ph -> A e. RR ) |
2 |
|
cncfioobdlem.b |
|- ( ph -> B e. RR ) |
3 |
|
cncfioobdlem.f |
|- ( ph -> F : ( A (,) B ) --> V ) |
4 |
|
cncfioobdlem.g |
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
5 |
|
cncfioobdlem.c |
|- ( ph -> C e. ( A (,) B ) ) |
6 |
4
|
a1i |
|- ( ph -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
7 |
1
|
adantr |
|- ( ( ph /\ x = C ) -> A e. RR ) |
8 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
9 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
10 |
|
elioo2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |
11 |
8 9 10
|
syl2anc |
|- ( ph -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |
12 |
5 11
|
mpbid |
|- ( ph -> ( C e. RR /\ A < C /\ C < B ) ) |
13 |
12
|
simp2d |
|- ( ph -> A < C ) |
14 |
13
|
adantr |
|- ( ( ph /\ x = C ) -> A < C ) |
15 |
|
eqcom |
|- ( x = C <-> C = x ) |
16 |
15
|
biimpi |
|- ( x = C -> C = x ) |
17 |
16
|
adantl |
|- ( ( ph /\ x = C ) -> C = x ) |
18 |
14 17
|
breqtrd |
|- ( ( ph /\ x = C ) -> A < x ) |
19 |
7 18
|
gtned |
|- ( ( ph /\ x = C ) -> x =/= A ) |
20 |
19
|
neneqd |
|- ( ( ph /\ x = C ) -> -. x = A ) |
21 |
20
|
iffalsed |
|- ( ( ph /\ x = C ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
22 |
|
simpr |
|- ( ( ph /\ x = C ) -> x = C ) |
23 |
5
|
elioored |
|- ( ph -> C e. RR ) |
24 |
23
|
adantr |
|- ( ( ph /\ x = C ) -> C e. RR ) |
25 |
22 24
|
eqeltrd |
|- ( ( ph /\ x = C ) -> x e. RR ) |
26 |
12
|
simp3d |
|- ( ph -> C < B ) |
27 |
26
|
adantr |
|- ( ( ph /\ x = C ) -> C < B ) |
28 |
22 27
|
eqbrtrd |
|- ( ( ph /\ x = C ) -> x < B ) |
29 |
25 28
|
ltned |
|- ( ( ph /\ x = C ) -> x =/= B ) |
30 |
29
|
neneqd |
|- ( ( ph /\ x = C ) -> -. x = B ) |
31 |
30
|
iffalsed |
|- ( ( ph /\ x = C ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
32 |
22
|
fveq2d |
|- ( ( ph /\ x = C ) -> ( F ` x ) = ( F ` C ) ) |
33 |
21 31 32
|
3eqtrd |
|- ( ( ph /\ x = C ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` C ) ) |
34 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
35 |
34 5
|
sselid |
|- ( ph -> C e. ( A [,] B ) ) |
36 |
3 5
|
ffvelrnd |
|- ( ph -> ( F ` C ) e. V ) |
37 |
6 33 35 36
|
fvmptd |
|- ( ph -> ( G ` C ) = ( F ` C ) ) |