| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cncfiooicc.x | 
							 |-  F/ x ph  | 
						
						
							| 2 | 
							
								
							 | 
							cncfiooicc.g | 
							 |-  G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cncfiooicc.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							cncfiooicc.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							cncfiooicc.f | 
							 |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )  | 
						
						
							| 6 | 
							
								
							 | 
							cncfiooicc.l | 
							 |-  ( ph -> L e. ( F limCC B ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cncfiooicc.r | 
							 |-  ( ph -> R e. ( F limCC A ) )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							 |-  F/ x ( ph /\ A < B )  | 
						
						
							| 9 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> A e. RR )  | 
						
						
							| 10 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> B e. RR )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ A < B ) -> A < B )  | 
						
						
							| 12 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> F e. ( ( A (,) B ) -cn-> CC ) )  | 
						
						
							| 13 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> L e. ( F limCC B ) )  | 
						
						
							| 14 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ A < B ) -> R e. ( F limCC A ) )  | 
						
						
							| 15 | 
							
								8 2 9 10 11 12 13 14
							 | 
							cncfiooicclem1 | 
							 |-  ( ( ph /\ A < B ) -> G e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 16 | 
							
								
							 | 
							limccl | 
							 |-  ( F limCC A ) C_ CC  | 
						
						
							| 17 | 
							
								16 7
							 | 
							sselid | 
							 |-  ( ph -> R e. CC )  | 
						
						
							| 18 | 
							
								17
							 | 
							snssd | 
							 |-  ( ph -> { R } C_ CC ) | 
						
						
							| 19 | 
							
								
							 | 
							ssid | 
							 |-  CC C_ CC  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							 |-  ( ph -> CC C_ CC )  | 
						
						
							| 21 | 
							
								
							 | 
							cncfss | 
							 |-  ( ( { R } C_ CC /\ CC C_ CC ) -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							syl2anc | 
							 |-  ( ph -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) | 
						
						
							| 24 | 
							
								3
							 | 
							rexrd | 
							 |-  ( ph -> A e. RR* )  | 
						
						
							| 25 | 
							
								
							 | 
							iccid | 
							 |-  ( A e. RR* -> ( A [,] A ) = { A } ) | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ph -> ( A [,] A ) = { A } ) | 
						
						
							| 27 | 
							
								
							 | 
							oveq2 | 
							 |-  ( A = B -> ( A [,] A ) = ( A [,] B ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylan9req | 
							 |-  ( ( ph /\ A = B ) -> { A } = ( A [,] B ) ) | 
						
						
							| 29 | 
							
								28
							 | 
							eqcomd | 
							 |-  ( ( ph /\ A = B ) -> ( A [,] B ) = { A } ) | 
						
						
							| 30 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) )  | 
						
						
							| 31 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> ( A [,] B ) = { A } ) | 
						
						
							| 32 | 
							
								30 31
							 | 
							eleqtrd | 
							 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x e. { A } ) | 
						
						
							| 33 | 
							
								
							 | 
							elsni | 
							 |-  ( x e. { A } -> x = A ) | 
						
						
							| 34 | 
							
								32 33
							 | 
							syl | 
							 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x = A )  | 
						
						
							| 35 | 
							
								34
							 | 
							iftrued | 
							 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							mpteq12dva | 
							 |-  ( ( ph /\ A = B ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. { A } |-> R ) ) | 
						
						
							| 37 | 
							
								2 36
							 | 
							eqtrid | 
							 |-  ( ( ph /\ A = B ) -> G = ( x e. { A } |-> R ) ) | 
						
						
							| 38 | 
							
								3
							 | 
							recnd | 
							 |-  ( ph -> A e. CC )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> A e. CC )  | 
						
						
							| 40 | 
							
								17
							 | 
							adantr | 
							 |-  ( ( ph /\ A = B ) -> R e. CC )  | 
						
						
							| 41 | 
							
								
							 | 
							cncfdmsn | 
							 |-  ( ( A e. CC /\ R e. CC ) -> ( x e. { A } |-> R ) e. ( { A } -cn-> { R } ) ) | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							syl2anc | 
							 |-  ( ( ph /\ A = B ) -> ( x e. { A } |-> R ) e. ( { A } -cn-> { R } ) ) | 
						
						
							| 43 | 
							
								37 42
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ A = B ) -> G e. ( { A } -cn-> { R } ) ) | 
						
						
							| 44 | 
							
								23 43
							 | 
							sseldd | 
							 |-  ( ( ph /\ A = B ) -> G e. ( { A } -cn-> CC ) ) | 
						
						
							| 45 | 
							
								28
							 | 
							oveq1d | 
							 |-  ( ( ph /\ A = B ) -> ( { A } -cn-> CC ) = ( ( A [,] B ) -cn-> CC ) ) | 
						
						
							| 46 | 
							
								44 45
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ -. A < B ) /\ A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 48 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> ph )  | 
						
						
							| 49 | 
							
								
							 | 
							eqcom | 
							 |-  ( B = A <-> A = B )  | 
						
						
							| 50 | 
							
								49
							 | 
							biimpi | 
							 |-  ( B = A -> A = B )  | 
						
						
							| 51 | 
							
								50
							 | 
							con3i | 
							 |-  ( -. A = B -> -. B = A )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. B = A )  | 
						
						
							| 53 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. A < B )  | 
						
						
							| 54 | 
							
								
							 | 
							pm4.56 | 
							 |-  ( ( -. B = A /\ -. A < B ) <-> -. ( B = A \/ A < B ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							biimpi | 
							 |-  ( ( -. B = A /\ -. A < B ) -> -. ( B = A \/ A < B ) )  | 
						
						
							| 56 | 
							
								52 53 55
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. ( B = A \/ A < B ) )  | 
						
						
							| 57 | 
							
								48 4
							 | 
							syl | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> B e. RR )  | 
						
						
							| 58 | 
							
								48 3
							 | 
							syl | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> A e. RR )  | 
						
						
							| 59 | 
							
								57 58
							 | 
							lttrid | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> ( B < A <-> -. ( B = A \/ A < B ) ) )  | 
						
						
							| 60 | 
							
								56 59
							 | 
							mpbird | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> B < A )  | 
						
						
							| 61 | 
							
								
							 | 
							0ss | 
							 |-  (/) C_ CC  | 
						
						
							| 62 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )  | 
						
						
							| 63 | 
							
								62
							 | 
							cnfldtop | 
							 |-  ( TopOpen ` CCfld ) e. Top  | 
						
						
							| 64 | 
							
								
							 | 
							rest0 | 
							 |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t (/) ) = { (/) } ) | 
						
						
							| 65 | 
							
								63 64
							 | 
							ax-mp | 
							 |-  ( ( TopOpen ` CCfld ) |`t (/) ) = { (/) } | 
						
						
							| 66 | 
							
								65
							 | 
							eqcomi | 
							 |-  { (/) } = ( ( TopOpen ` CCfld ) |`t (/) ) | 
						
						
							| 67 | 
							
								62 66 66
							 | 
							cncfcn | 
							 |-  ( ( (/) C_ CC /\ (/) C_ CC ) -> ( (/) -cn-> (/) ) = ( { (/) } Cn { (/) } ) ) | 
						
						
							| 68 | 
							
								61 61 67
							 | 
							mp2an | 
							 |-  ( (/) -cn-> (/) ) = ( { (/) } Cn { (/) } ) | 
						
						
							| 69 | 
							
								
							 | 
							cncfss | 
							 |-  ( ( (/) C_ CC /\ CC C_ CC ) -> ( (/) -cn-> (/) ) C_ ( (/) -cn-> CC ) )  | 
						
						
							| 70 | 
							
								61 19 69
							 | 
							mp2an | 
							 |-  ( (/) -cn-> (/) ) C_ ( (/) -cn-> CC )  | 
						
						
							| 71 | 
							
								68 70
							 | 
							eqsstrri | 
							 |-  ( { (/) } Cn { (/) } ) C_ ( (/) -cn-> CC ) | 
						
						
							| 72 | 
							
								2
							 | 
							a1i | 
							 |-  ( ( ph /\ B < A ) -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ B < A ) -> B < A )  | 
						
						
							| 74 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ph /\ B < A ) -> A e. RR* )  | 
						
						
							| 75 | 
							
								4
							 | 
							rexrd | 
							 |-  ( ph -> B e. RR* )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantr | 
							 |-  ( ( ph /\ B < A ) -> B e. RR* )  | 
						
						
							| 77 | 
							
								
							 | 
							icc0 | 
							 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) )  | 
						
						
							| 78 | 
							
								74 76 77
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B < A ) -> ( ( A [,] B ) = (/) <-> B < A ) )  | 
						
						
							| 79 | 
							
								73 78
							 | 
							mpbird | 
							 |-  ( ( ph /\ B < A ) -> ( A [,] B ) = (/) )  | 
						
						
							| 80 | 
							
								79
							 | 
							mpteq1d | 
							 |-  ( ( ph /\ B < A ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							mpt0 | 
							 |-  ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = (/)  | 
						
						
							| 82 | 
							
								81
							 | 
							a1i | 
							 |-  ( ( ph /\ B < A ) -> ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = (/) )  | 
						
						
							| 83 | 
							
								72 80 82
							 | 
							3eqtrd | 
							 |-  ( ( ph /\ B < A ) -> G = (/) )  | 
						
						
							| 84 | 
							
								
							 | 
							0cnf | 
							 |-  (/) e. ( { (/) } Cn { (/) } ) | 
						
						
							| 85 | 
							
								83 84
							 | 
							eqeltrdi | 
							 |-  ( ( ph /\ B < A ) -> G e. ( { (/) } Cn { (/) } ) ) | 
						
						
							| 86 | 
							
								71 85
							 | 
							sselid | 
							 |-  ( ( ph /\ B < A ) -> G e. ( (/) -cn-> CC ) )  | 
						
						
							| 87 | 
							
								79
							 | 
							eqcomd | 
							 |-  ( ( ph /\ B < A ) -> (/) = ( A [,] B ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							oveq1d | 
							 |-  ( ( ph /\ B < A ) -> ( (/) -cn-> CC ) = ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 89 | 
							
								86 88
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ B < A ) -> G e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 90 | 
							
								48 60 89
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 91 | 
							
								47 90
							 | 
							pm2.61dan | 
							 |-  ( ( ph /\ -. A < B ) -> G e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 92 | 
							
								15 91
							 | 
							pm2.61dan | 
							 |-  ( ph -> G e. ( ( A [,] B ) -cn-> CC ) )  |