| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cncfiooicclem1.x | 
							 |-  F/ x ph  | 
						
						
							| 2 | 
							
								
							 | 
							cncfiooicclem1.g | 
							 |-  G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cncfiooicclem1.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							cncfiooicclem1.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							cncfiooicclem1.altb | 
							 |-  ( ph -> A < B )  | 
						
						
							| 6 | 
							
								
							 | 
							cncfiooicclem1.f | 
							 |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cncfiooicclem1.l | 
							 |-  ( ph -> L e. ( F limCC B ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cncfiooicclem1.r | 
							 |-  ( ph -> R e. ( F limCC A ) )  | 
						
						
							| 9 | 
							
								
							 | 
							limccl | 
							 |-  ( F limCC A ) C_ CC  | 
						
						
							| 10 | 
							
								9 8
							 | 
							sselid | 
							 |-  ( ph -> R e. CC )  | 
						
						
							| 11 | 
							
								10
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> R e. CC )  | 
						
						
							| 12 | 
							
								
							 | 
							limccl | 
							 |-  ( F limCC B ) C_ CC  | 
						
						
							| 13 | 
							
								12 7
							 | 
							sselid | 
							 |-  ( ph -> L e. CC )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> L e. CC )  | 
						
						
							| 15 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ph )  | 
						
						
							| 16 | 
							
								
							 | 
							orel1 | 
							 |-  ( -. x = A -> ( ( x = A \/ x = B ) -> x = B ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							con3dimp | 
							 |-  ( ( -. x = A /\ -. x = B ) -> -. ( x = A \/ x = B ) )  | 
						
						
							| 18 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 19 | 
							
								18
							 | 
							elpr | 
							 |-  ( x e. { A , B } <-> ( x = A \/ x = B ) ) | 
						
						
							| 20 | 
							
								17 19
							 | 
							sylnibr | 
							 |-  ( ( -. x = A /\ -. x = B ) -> -. x e. { A , B } ) | 
						
						
							| 21 | 
							
								20
							 | 
							adantll | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> -. x e. { A , B } ) | 
						
						
							| 22 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A [,] B ) )  | 
						
						
							| 23 | 
							
								3
							 | 
							rexrd | 
							 |-  ( ph -> A e. RR* )  | 
						
						
							| 24 | 
							
								15 23
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* )  | 
						
						
							| 25 | 
							
								4
							 | 
							rexrd | 
							 |-  ( ph -> B e. RR* )  | 
						
						
							| 26 | 
							
								15 25
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* )  | 
						
						
							| 27 | 
							
								3 4 5
							 | 
							ltled | 
							 |-  ( ph -> A <_ B )  | 
						
						
							| 28 | 
							
								15 27
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A <_ B )  | 
						
						
							| 29 | 
							
								
							 | 
							prunioo | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) | 
						
						
							| 30 | 
							
								24 26 28 29
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) | 
						
						
							| 31 | 
							
								22 30
							 | 
							eleqtrrd | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( ( A (,) B ) u. { A , B } ) ) | 
						
						
							| 32 | 
							
								
							 | 
							elun | 
							 |-  ( x e. ( ( A (,) B ) u. { A , B } ) <-> ( x e. ( A (,) B ) \/ x e. { A , B } ) ) | 
						
						
							| 33 | 
							
								31 32
							 | 
							sylib | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( x e. ( A (,) B ) \/ x e. { A , B } ) ) | 
						
						
							| 34 | 
							
								
							 | 
							orel2 | 
							 |-  ( -. x e. { A , B } -> ( ( x e. ( A (,) B ) \/ x e. { A , B } ) -> x e. ( A (,) B ) ) ) | 
						
						
							| 35 | 
							
								21 33 34
							 | 
							sylc | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) )  | 
						
						
							| 36 | 
							
								
							 | 
							cncff | 
							 |-  ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC )  | 
						
						
							| 37 | 
							
								6 36
							 | 
							syl | 
							 |-  ( ph -> F : ( A (,) B ) --> CC )  | 
						
						
							| 38 | 
							
								37
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC )  | 
						
						
							| 39 | 
							
								15 35 38
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. CC )  | 
						
						
							| 40 | 
							
								14 39
							 | 
							ifclda | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = B , L , ( F ` x ) ) e. CC )  | 
						
						
							| 41 | 
							
								11 40
							 | 
							ifclda | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 42 | 
							
								1 41 2
							 | 
							fmptdf | 
							 |-  ( ph -> G : ( A [,] B ) --> CC )  | 
						
						
							| 43 | 
							
								
							 | 
							elun | 
							 |-  ( y e. ( ( A (,) B ) u. { A , B } ) <-> ( y e. ( A (,) B ) \/ y e. { A , B } ) ) | 
						
						
							| 44 | 
							
								23 25 27 29
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) | 
						
						
							| 45 | 
							
								44
							 | 
							eleq2d | 
							 |-  ( ph -> ( y e. ( ( A (,) B ) u. { A , B } ) <-> y e. ( A [,] B ) ) ) | 
						
						
							| 46 | 
							
								43 45
							 | 
							bitr3id | 
							 |-  ( ph -> ( ( y e. ( A (,) B ) \/ y e. { A , B } ) <-> y e. ( A [,] B ) ) ) | 
						
						
							| 47 | 
							
								46
							 | 
							biimpar | 
							 |-  ( ( ph /\ y e. ( A [,] B ) ) -> ( y e. ( A (,) B ) \/ y e. { A , B } ) ) | 
						
						
							| 48 | 
							
								
							 | 
							ioossicc | 
							 |-  ( A (,) B ) C_ ( A [,] B )  | 
						
						
							| 49 | 
							
								
							 | 
							fssres | 
							 |-  ( ( G : ( A [,] B ) --> CC /\ ( A (,) B ) C_ ( A [,] B ) ) -> ( G |` ( A (,) B ) ) : ( A (,) B ) --> CC )  | 
						
						
							| 50 | 
							
								42 48 49
							 | 
							sylancl | 
							 |-  ( ph -> ( G |` ( A (,) B ) ) : ( A (,) B ) --> CC )  | 
						
						
							| 51 | 
							
								50
							 | 
							feqmptd | 
							 |-  ( ph -> ( G |` ( A (,) B ) ) = ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							nfmpt1 | 
							 |-  F/_ x ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )  | 
						
						
							| 53 | 
							
								2 52
							 | 
							nfcxfr | 
							 |-  F/_ x G  | 
						
						
							| 54 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x ( A (,) B )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							nfres | 
							 |-  F/_ x ( G |` ( A (,) B ) )  | 
						
						
							| 56 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x y  | 
						
						
							| 57 | 
							
								55 56
							 | 
							nffv | 
							 |-  F/_ x ( ( G |` ( A (,) B ) ) ` y )  | 
						
						
							| 58 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ y ( G |` ( A (,) B ) )  | 
						
						
							| 59 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ y x  | 
						
						
							| 60 | 
							
								58 59
							 | 
							nffv | 
							 |-  F/_ y ( ( G |` ( A (,) B ) ) ` x )  | 
						
						
							| 61 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = x -> ( ( G |` ( A (,) B ) ) ` y ) = ( ( G |` ( A (,) B ) ) ` x ) )  | 
						
						
							| 62 | 
							
								57 60 61
							 | 
							cbvmpt | 
							 |-  ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) = ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							 |-  ( ph -> ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) = ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							fvres | 
							 |-  ( x e. ( A (,) B ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( G ` x ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( G ` x ) )  | 
						
						
							| 66 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) )  | 
						
						
							| 67 | 
							
								48 66
							 | 
							sselid | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) )  | 
						
						
							| 68 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> R e. CC )  | 
						
						
							| 69 | 
							
								13
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A (,) B ) ) /\ x = B ) -> L e. CC )  | 
						
						
							| 70 | 
							
								38
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. x = B ) -> ( F ` x ) e. CC )  | 
						
						
							| 71 | 
							
								69 70
							 | 
							ifclda | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) e. CC )  | 
						
						
							| 72 | 
							
								68 71
							 | 
							ifcld | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC )  | 
						
						
							| 73 | 
							
								2
							 | 
							fvmpt2 | 
							 |-  ( ( x e. ( A [,] B ) /\ if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )  | 
						
						
							| 74 | 
							
								67 72 73
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							elioo4g | 
							 |-  ( x e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ x e. RR ) /\ ( A < x /\ x < B ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							biimpi | 
							 |-  ( x e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* /\ x e. RR ) /\ ( A < x /\ x < B ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							simpld | 
							 |-  ( x e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* /\ x e. RR ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							simp1d | 
							 |-  ( x e. ( A (,) B ) -> A e. RR* )  | 
						
						
							| 79 | 
							
								
							 | 
							elioore | 
							 |-  ( x e. ( A (,) B ) -> x e. RR )  | 
						
						
							| 80 | 
							
								79
							 | 
							rexrd | 
							 |-  ( x e. ( A (,) B ) -> x e. RR* )  | 
						
						
							| 81 | 
							
								
							 | 
							eliooord | 
							 |-  ( x e. ( A (,) B ) -> ( A < x /\ x < B ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							simpld | 
							 |-  ( x e. ( A (,) B ) -> A < x )  | 
						
						
							| 83 | 
							
								
							 | 
							xrltne | 
							 |-  ( ( A e. RR* /\ x e. RR* /\ A < x ) -> x =/= A )  | 
						
						
							| 84 | 
							
								78 80 82 83
							 | 
							syl3anc | 
							 |-  ( x e. ( A (,) B ) -> x =/= A )  | 
						
						
							| 85 | 
							
								84
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A )  | 
						
						
							| 86 | 
							
								85
							 | 
							neneqd | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A )  | 
						
						
							| 87 | 
							
								86
							 | 
							iffalsed | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) )  | 
						
						
							| 88 | 
							
								81
							 | 
							simprd | 
							 |-  ( x e. ( A (,) B ) -> x < B )  | 
						
						
							| 89 | 
							
								79 88
							 | 
							ltned | 
							 |-  ( x e. ( A (,) B ) -> x =/= B )  | 
						
						
							| 90 | 
							
								89
							 | 
							neneqd | 
							 |-  ( x e. ( A (,) B ) -> -. x = B )  | 
						
						
							| 91 | 
							
								90
							 | 
							iffalsed | 
							 |-  ( x e. ( A (,) B ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) )  | 
						
						
							| 93 | 
							
								87 92
							 | 
							eqtrd | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) )  | 
						
						
							| 94 | 
							
								65 74 93
							 | 
							3eqtrd | 
							 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( F ` x ) )  | 
						
						
							| 95 | 
							
								1 94
							 | 
							mpteq2da | 
							 |-  ( ph -> ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) ) = ( x e. ( A (,) B ) |-> ( F ` x ) ) )  | 
						
						
							| 96 | 
							
								51 63 95
							 | 
							3eqtrd | 
							 |-  ( ph -> ( G |` ( A (,) B ) ) = ( x e. ( A (,) B ) |-> ( F ` x ) ) )  | 
						
						
							| 97 | 
							
								37
							 | 
							feqmptd | 
							 |-  ( ph -> F = ( x e. ( A (,) B ) |-> ( F ` x ) ) )  | 
						
						
							| 98 | 
							
								
							 | 
							ioosscn | 
							 |-  ( A (,) B ) C_ CC  | 
						
						
							| 99 | 
							
								98
							 | 
							a1i | 
							 |-  ( ph -> ( A (,) B ) C_ CC )  | 
						
						
							| 100 | 
							
								
							 | 
							ssid | 
							 |-  CC C_ CC  | 
						
						
							| 101 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )  | 
						
						
							| 102 | 
							
								
							 | 
							eqid | 
							 |-  ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) )  | 
						
						
							| 103 | 
							
								101
							 | 
							cnfldtop | 
							 |-  ( TopOpen ` CCfld ) e. Top  | 
						
						
							| 104 | 
							
								
							 | 
							unicntop | 
							 |-  CC = U. ( TopOpen ` CCfld )  | 
						
						
							| 105 | 
							
								104
							 | 
							restid | 
							 |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) )  | 
						
						
							| 106 | 
							
								103 105
							 | 
							ax-mp | 
							 |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld )  | 
						
						
							| 107 | 
							
								106
							 | 
							eqcomi | 
							 |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC )  | 
						
						
							| 108 | 
							
								101 102 107
							 | 
							cncfcn | 
							 |-  ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 109 | 
							
								99 100 108
							 | 
							sylancl | 
							 |-  ( ph -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 110 | 
							
								6 97 109
							 | 
							3eltr3d | 
							 |-  ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 111 | 
							
								96 110
							 | 
							eqeltrd | 
							 |-  ( ph -> ( G |` ( A (,) B ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 112 | 
							
								104
							 | 
							restuni | 
							 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,) B ) C_ CC ) -> ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) )  | 
						
						
							| 113 | 
							
								103 98 112
							 | 
							mp2an | 
							 |-  ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							cncnpi | 
							 |-  ( ( ( G |` ( A (,) B ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 115 | 
							
								111 114
							 | 
							sylan | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 116 | 
							
								103
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( TopOpen ` CCfld ) e. Top )  | 
						
						
							| 117 | 
							
								48
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ ( A [,] B ) )  | 
						
						
							| 118 | 
							
								
							 | 
							ovex | 
							 |-  ( A [,] B ) e. _V  | 
						
						
							| 119 | 
							
								118
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( A [,] B ) e. _V )  | 
						
						
							| 120 | 
							
								
							 | 
							restabs | 
							 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,) B ) C_ ( A [,] B ) /\ ( A [,] B ) e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) )  | 
						
						
							| 121 | 
							
								116 117 119 120
							 | 
							syl3anc | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							eqcomd | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							oveq1d | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							fveq1d | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 125 | 
							
								115 124
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 126 | 
							
								
							 | 
							resttop | 
							 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top )  | 
						
						
							| 127 | 
							
								103 118 126
							 | 
							mp2an | 
							 |-  ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top  | 
						
						
							| 128 | 
							
								127
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top )  | 
						
						
							| 129 | 
							
								48
							 | 
							a1i | 
							 |-  ( ph -> ( A (,) B ) C_ ( A [,] B ) )  | 
						
						
							| 130 | 
							
								3 4
							 | 
							iccssred | 
							 |-  ( ph -> ( A [,] B ) C_ RR )  | 
						
						
							| 131 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 132 | 
							
								130 131
							 | 
							sstrdi | 
							 |-  ( ph -> ( A [,] B ) C_ CC )  | 
						
						
							| 133 | 
							
								104
							 | 
							restuni | 
							 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) C_ CC ) -> ( A [,] B ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) )  | 
						
						
							| 134 | 
							
								103 132 133
							 | 
							sylancr | 
							 |-  ( ph -> ( A [,] B ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) )  | 
						
						
							| 135 | 
							
								129 134
							 | 
							sseqtrd | 
							 |-  ( ph -> ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) )  | 
						
						
							| 137 | 
							
								
							 | 
							retop | 
							 |-  ( topGen ` ran (,) ) e. Top  | 
						
						
							| 138 | 
							
								137
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( topGen ` ran (,) ) e. Top )  | 
						
						
							| 139 | 
							
								
							 | 
							ioossre | 
							 |-  ( A (,) B ) C_ RR  | 
						
						
							| 140 | 
							
								
							 | 
							difss | 
							 |-  ( RR \ ( A [,] B ) ) C_ RR  | 
						
						
							| 141 | 
							
								139 140
							 | 
							unssi | 
							 |-  ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR  | 
						
						
							| 142 | 
							
								141
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR )  | 
						
						
							| 143 | 
							
								
							 | 
							ssun1 | 
							 |-  ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							a1i | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) )  | 
						
						
							| 145 | 
							
								
							 | 
							uniretop | 
							 |-  RR = U. ( topGen ` ran (,) )  | 
						
						
							| 146 | 
							
								145
							 | 
							ntrss | 
							 |-  ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR /\ ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) )  | 
						
						
							| 147 | 
							
								138 142 144 146
							 | 
							syl3anc | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) )  | 
						
						
							| 148 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( A (,) B ) )  | 
						
						
							| 149 | 
							
								
							 | 
							ioontr | 
							 |-  ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B )  | 
						
						
							| 150 | 
							
								148 149
							 | 
							eleqtrrdi | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) )  | 
						
						
							| 151 | 
							
								147 150
							 | 
							sseldd | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) )  | 
						
						
							| 152 | 
							
								48 148
							 | 
							sselid | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( A [,] B ) )  | 
						
						
							| 153 | 
							
								151 152
							 | 
							elind | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) )  | 
						
						
							| 154 | 
							
								130
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( A [,] B ) C_ RR )  | 
						
						
							| 155 | 
							
								
							 | 
							eqid | 
							 |-  ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) )  | 
						
						
							| 156 | 
							
								145 155
							 | 
							restntr | 
							 |-  ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR /\ ( A (,) B ) C_ ( A [,] B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) )  | 
						
						
							| 157 | 
							
								138 154 117 156
							 | 
							syl3anc | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) )  | 
						
						
							| 158 | 
							
								153 157
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) )  | 
						
						
							| 159 | 
							
								
							 | 
							tgioo4 | 
							 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )  | 
						
						
							| 160 | 
							
								159
							 | 
							a1i | 
							 |-  ( ph -> ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) )  | 
						
						
							| 161 | 
							
								160
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) )  | 
						
						
							| 162 | 
							
								103
							 | 
							a1i | 
							 |-  ( ph -> ( TopOpen ` CCfld ) e. Top )  | 
						
						
							| 163 | 
							
								
							 | 
							reex | 
							 |-  RR e. _V  | 
						
						
							| 164 | 
							
								163
							 | 
							a1i | 
							 |-  ( ph -> RR e. _V )  | 
						
						
							| 165 | 
							
								
							 | 
							restabs | 
							 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) )  | 
						
						
							| 166 | 
							
								162 130 164 165
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) )  | 
						
						
							| 167 | 
							
								161 166
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) )  | 
						
						
							| 168 | 
							
								167
							 | 
							fveq2d | 
							 |-  ( ph -> ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) )  | 
						
						
							| 169 | 
							
								168
							 | 
							fveq1d | 
							 |-  ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) )  | 
						
						
							| 171 | 
							
								158 170
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) )  | 
						
						
							| 172 | 
							
								134
							 | 
							feq2d | 
							 |-  ( ph -> ( G : ( A [,] B ) --> CC <-> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) )  | 
						
						
							| 173 | 
							
								42 172
							 | 
							mpbid | 
							 |-  ( ph -> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC )  | 
						
						
							| 174 | 
							
								173
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC )  | 
						
						
							| 175 | 
							
								
							 | 
							eqid | 
							 |-  U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) )  | 
						
						
							| 176 | 
							
								175 104
							 | 
							cnprest | 
							 |-  ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top /\ ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) /\ ( y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) /\ G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) )  | 
						
						
							| 177 | 
							
								128 136 171 174 176
							 | 
							syl22anc | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) )  | 
						
						
							| 178 | 
							
								125 177
							 | 
							mpbird | 
							 |-  ( ( ph /\ y e. ( A (,) B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 179 | 
							
								
							 | 
							elpri | 
							 |-  ( y e. { A , B } -> ( y = A \/ y = B ) ) | 
						
						
							| 180 | 
							
								
							 | 
							iftrue | 
							 |-  ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R )  | 
						
						
							| 181 | 
							
								
							 | 
							lbicc2 | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) )  | 
						
						
							| 182 | 
							
								23 25 27 181
							 | 
							syl3anc | 
							 |-  ( ph -> A e. ( A [,] B ) )  | 
						
						
							| 183 | 
							
								2 180 182 8
							 | 
							fvmptd3 | 
							 |-  ( ph -> ( G ` A ) = R )  | 
						
						
							| 184 | 
							
								97
							 | 
							eqcomd | 
							 |-  ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) = F )  | 
						
						
							| 185 | 
							
								96 184
							 | 
							eqtr2d | 
							 |-  ( ph -> F = ( G |` ( A (,) B ) ) )  | 
						
						
							| 186 | 
							
								185
							 | 
							oveq1d | 
							 |-  ( ph -> ( F limCC A ) = ( ( G |` ( A (,) B ) ) limCC A ) )  | 
						
						
							| 187 | 
							
								8 186
							 | 
							eleqtrd | 
							 |-  ( ph -> R e. ( ( G |` ( A (,) B ) ) limCC A ) )  | 
						
						
							| 188 | 
							
								3 4 5 42
							 | 
							limciccioolb | 
							 |-  ( ph -> ( ( G |` ( A (,) B ) ) limCC A ) = ( G limCC A ) )  | 
						
						
							| 189 | 
							
								187 188
							 | 
							eleqtrd | 
							 |-  ( ph -> R e. ( G limCC A ) )  | 
						
						
							| 190 | 
							
								183 189
							 | 
							eqeltrd | 
							 |-  ( ph -> ( G ` A ) e. ( G limCC A ) )  | 
						
						
							| 191 | 
							
								
							 | 
							eqid | 
							 |-  ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) )  | 
						
						
							| 192 | 
							
								101 191
							 | 
							cnplimc | 
							 |-  ( ( ( A [,] B ) C_ CC /\ A e. ( A [,] B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` A ) e. ( G limCC A ) ) ) )  | 
						
						
							| 193 | 
							
								132 182 192
							 | 
							syl2anc | 
							 |-  ( ph -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` A ) e. ( G limCC A ) ) ) )  | 
						
						
							| 194 | 
							
								42 190 193
							 | 
							mpbir2and | 
							 |-  ( ph -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) )  | 
						
						
							| 195 | 
							
								194
							 | 
							adantr | 
							 |-  ( ( ph /\ y = A ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) )  | 
						
						
							| 196 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = A -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) )  | 
						
						
							| 197 | 
							
								196
							 | 
							eqcomd | 
							 |-  ( y = A -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 198 | 
							
								197
							 | 
							adantl | 
							 |-  ( ( ph /\ y = A ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 199 | 
							
								195 198
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ y = A ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 200 | 
							
								180
							 | 
							adantl | 
							 |-  ( ( x = B /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R )  | 
						
						
							| 201 | 
							
								
							 | 
							eqtr2 | 
							 |-  ( ( x = B /\ x = A ) -> B = A )  | 
						
						
							| 202 | 
							
								
							 | 
							iftrue | 
							 |-  ( B = A -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = R )  | 
						
						
							| 203 | 
							
								202
							 | 
							eqcomd | 
							 |-  ( B = A -> R = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) )  | 
						
						
							| 204 | 
							
								201 203
							 | 
							syl | 
							 |-  ( ( x = B /\ x = A ) -> R = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) )  | 
						
						
							| 205 | 
							
								200 204
							 | 
							eqtrd | 
							 |-  ( ( x = B /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) )  | 
						
						
							| 206 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) )  | 
						
						
							| 207 | 
							
								206
							 | 
							adantl | 
							 |-  ( ( x = B /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) )  | 
						
						
							| 208 | 
							
								
							 | 
							iftrue | 
							 |-  ( x = B -> if ( x = B , L , ( F ` x ) ) = L )  | 
						
						
							| 209 | 
							
								208
							 | 
							adantr | 
							 |-  ( ( x = B /\ -. x = A ) -> if ( x = B , L , ( F ` x ) ) = L )  | 
						
						
							| 210 | 
							
								
							 | 
							df-ne | 
							 |-  ( x =/= A <-> -. x = A )  | 
						
						
							| 211 | 
							
								
							 | 
							pm13.18 | 
							 |-  ( ( x = B /\ x =/= A ) -> B =/= A )  | 
						
						
							| 212 | 
							
								210 211
							 | 
							sylan2br | 
							 |-  ( ( x = B /\ -. x = A ) -> B =/= A )  | 
						
						
							| 213 | 
							
								212
							 | 
							neneqd | 
							 |-  ( ( x = B /\ -. x = A ) -> -. B = A )  | 
						
						
							| 214 | 
							
								213
							 | 
							iffalsed | 
							 |-  ( ( x = B /\ -. x = A ) -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = if ( B = B , L , ( F ` B ) ) )  | 
						
						
							| 215 | 
							
								
							 | 
							eqid | 
							 |-  B = B  | 
						
						
							| 216 | 
							
								215
							 | 
							iftruei | 
							 |-  if ( B = B , L , ( F ` B ) ) = L  | 
						
						
							| 217 | 
							
								214 216
							 | 
							eqtr2di | 
							 |-  ( ( x = B /\ -. x = A ) -> L = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) )  | 
						
						
							| 218 | 
							
								207 209 217
							 | 
							3eqtrd | 
							 |-  ( ( x = B /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) )  | 
						
						
							| 219 | 
							
								205 218
							 | 
							pm2.61dan | 
							 |-  ( x = B -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) )  | 
						
						
							| 220 | 
							
								4
							 | 
							leidd | 
							 |-  ( ph -> B <_ B )  | 
						
						
							| 221 | 
							
								3 4 4 27 220
							 | 
							eliccd | 
							 |-  ( ph -> B e. ( A [,] B ) )  | 
						
						
							| 222 | 
							
								216 13
							 | 
							eqeltrid | 
							 |-  ( ph -> if ( B = B , L , ( F ` B ) ) e. CC )  | 
						
						
							| 223 | 
							
								10 222
							 | 
							ifcld | 
							 |-  ( ph -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) e. CC )  | 
						
						
							| 224 | 
							
								2 219 221 223
							 | 
							fvmptd3 | 
							 |-  ( ph -> ( G ` B ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) )  | 
						
						
							| 225 | 
							
								3 5
							 | 
							gtned | 
							 |-  ( ph -> B =/= A )  | 
						
						
							| 226 | 
							
								225
							 | 
							neneqd | 
							 |-  ( ph -> -. B = A )  | 
						
						
							| 227 | 
							
								226
							 | 
							iffalsed | 
							 |-  ( ph -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = if ( B = B , L , ( F ` B ) ) )  | 
						
						
							| 228 | 
							
								216
							 | 
							a1i | 
							 |-  ( ph -> if ( B = B , L , ( F ` B ) ) = L )  | 
						
						
							| 229 | 
							
								224 227 228
							 | 
							3eqtrd | 
							 |-  ( ph -> ( G ` B ) = L )  | 
						
						
							| 230 | 
							
								185
							 | 
							oveq1d | 
							 |-  ( ph -> ( F limCC B ) = ( ( G |` ( A (,) B ) ) limCC B ) )  | 
						
						
							| 231 | 
							
								7 230
							 | 
							eleqtrd | 
							 |-  ( ph -> L e. ( ( G |` ( A (,) B ) ) limCC B ) )  | 
						
						
							| 232 | 
							
								3 4 5 42
							 | 
							limcicciooub | 
							 |-  ( ph -> ( ( G |` ( A (,) B ) ) limCC B ) = ( G limCC B ) )  | 
						
						
							| 233 | 
							
								231 232
							 | 
							eleqtrd | 
							 |-  ( ph -> L e. ( G limCC B ) )  | 
						
						
							| 234 | 
							
								229 233
							 | 
							eqeltrd | 
							 |-  ( ph -> ( G ` B ) e. ( G limCC B ) )  | 
						
						
							| 235 | 
							
								101 191
							 | 
							cnplimc | 
							 |-  ( ( ( A [,] B ) C_ CC /\ B e. ( A [,] B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` B ) e. ( G limCC B ) ) ) )  | 
						
						
							| 236 | 
							
								132 221 235
							 | 
							syl2anc | 
							 |-  ( ph -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` B ) e. ( G limCC B ) ) ) )  | 
						
						
							| 237 | 
							
								42 234 236
							 | 
							mpbir2and | 
							 |-  ( ph -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) )  | 
						
						
							| 238 | 
							
								237
							 | 
							adantr | 
							 |-  ( ( ph /\ y = B ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) )  | 
						
						
							| 239 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = B -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) )  | 
						
						
							| 240 | 
							
								239
							 | 
							eqcomd | 
							 |-  ( y = B -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 241 | 
							
								240
							 | 
							adantl | 
							 |-  ( ( ph /\ y = B ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 242 | 
							
								238 241
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ y = B ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 243 | 
							
								199 242
							 | 
							jaodan | 
							 |-  ( ( ph /\ ( y = A \/ y = B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 244 | 
							
								179 243
							 | 
							sylan2 | 
							 |-  ( ( ph /\ y e. { A , B } ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) | 
						
						
							| 245 | 
							
								178 244
							 | 
							jaodan | 
							 |-  ( ( ph /\ ( y e. ( A (,) B ) \/ y e. { A , B } ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) | 
						
						
							| 246 | 
							
								47 245
							 | 
							syldan | 
							 |-  ( ( ph /\ y e. ( A [,] B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 247 | 
							
								246
							 | 
							ralrimiva | 
							 |-  ( ph -> A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) )  | 
						
						
							| 248 | 
							
								101
							 | 
							cnfldtopon | 
							 |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC )  | 
						
						
							| 249 | 
							
								
							 | 
							resttopon | 
							 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A [,] B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) )  | 
						
						
							| 250 | 
							
								248 132 249
							 | 
							sylancr | 
							 |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) )  | 
						
						
							| 251 | 
							
								
							 | 
							cncnp | 
							 |-  ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( G : ( A [,] B ) --> CC /\ A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) )  | 
						
						
							| 252 | 
							
								250 248 251
							 | 
							sylancl | 
							 |-  ( ph -> ( G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( G : ( A [,] B ) --> CC /\ A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) )  | 
						
						
							| 253 | 
							
								42 247 252
							 | 
							mpbir2and | 
							 |-  ( ph -> G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 254 | 
							
								101 191 107
							 | 
							cncfcn | 
							 |-  ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 255 | 
							
								132 100 254
							 | 
							sylancl | 
							 |-  ( ph -> ( ( A [,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 256 | 
							
								253 255
							 | 
							eleqtrrd | 
							 |-  ( ph -> G e. ( ( A [,] B ) -cn-> CC ) )  |