Step |
Hyp |
Ref |
Expression |
1 |
|
cncfiooicclem1.x |
|- F/ x ph |
2 |
|
cncfiooicclem1.g |
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
3 |
|
cncfiooicclem1.a |
|- ( ph -> A e. RR ) |
4 |
|
cncfiooicclem1.b |
|- ( ph -> B e. RR ) |
5 |
|
cncfiooicclem1.altb |
|- ( ph -> A < B ) |
6 |
|
cncfiooicclem1.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
7 |
|
cncfiooicclem1.l |
|- ( ph -> L e. ( F limCC B ) ) |
8 |
|
cncfiooicclem1.r |
|- ( ph -> R e. ( F limCC A ) ) |
9 |
|
limccl |
|- ( F limCC A ) C_ CC |
10 |
9 8
|
sselid |
|- ( ph -> R e. CC ) |
11 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> R e. CC ) |
12 |
|
limccl |
|- ( F limCC B ) C_ CC |
13 |
12 7
|
sselid |
|- ( ph -> L e. CC ) |
14 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> L e. CC ) |
15 |
|
simplll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ph ) |
16 |
|
orel1 |
|- ( -. x = A -> ( ( x = A \/ x = B ) -> x = B ) ) |
17 |
16
|
con3dimp |
|- ( ( -. x = A /\ -. x = B ) -> -. ( x = A \/ x = B ) ) |
18 |
|
vex |
|- x e. _V |
19 |
18
|
elpr |
|- ( x e. { A , B } <-> ( x = A \/ x = B ) ) |
20 |
17 19
|
sylnibr |
|- ( ( -. x = A /\ -. x = B ) -> -. x e. { A , B } ) |
21 |
20
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> -. x e. { A , B } ) |
22 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A [,] B ) ) |
23 |
3
|
rexrd |
|- ( ph -> A e. RR* ) |
24 |
15 23
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
25 |
4
|
rexrd |
|- ( ph -> B e. RR* ) |
26 |
15 25
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
27 |
3 4 5
|
ltled |
|- ( ph -> A <_ B ) |
28 |
15 27
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A <_ B ) |
29 |
|
prunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
30 |
24 26 28 29
|
syl3anc |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
31 |
22 30
|
eleqtrrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( ( A (,) B ) u. { A , B } ) ) |
32 |
|
elun |
|- ( x e. ( ( A (,) B ) u. { A , B } ) <-> ( x e. ( A (,) B ) \/ x e. { A , B } ) ) |
33 |
31 32
|
sylib |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( x e. ( A (,) B ) \/ x e. { A , B } ) ) |
34 |
|
orel2 |
|- ( -. x e. { A , B } -> ( ( x e. ( A (,) B ) \/ x e. { A , B } ) -> x e. ( A (,) B ) ) ) |
35 |
21 33 34
|
sylc |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
36 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
37 |
6 36
|
syl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
38 |
37
|
ffvelrnda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) |
39 |
15 35 38
|
syl2anc |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. CC ) |
40 |
14 39
|
ifclda |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = B , L , ( F ` x ) ) e. CC ) |
41 |
11 40
|
ifclda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
42 |
1 41 2
|
fmptdf |
|- ( ph -> G : ( A [,] B ) --> CC ) |
43 |
|
elun |
|- ( y e. ( ( A (,) B ) u. { A , B } ) <-> ( y e. ( A (,) B ) \/ y e. { A , B } ) ) |
44 |
23 25 27 29
|
syl3anc |
|- ( ph -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
45 |
44
|
eleq2d |
|- ( ph -> ( y e. ( ( A (,) B ) u. { A , B } ) <-> y e. ( A [,] B ) ) ) |
46 |
43 45
|
bitr3id |
|- ( ph -> ( ( y e. ( A (,) B ) \/ y e. { A , B } ) <-> y e. ( A [,] B ) ) ) |
47 |
46
|
biimpar |
|- ( ( ph /\ y e. ( A [,] B ) ) -> ( y e. ( A (,) B ) \/ y e. { A , B } ) ) |
48 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
49 |
|
fssres |
|- ( ( G : ( A [,] B ) --> CC /\ ( A (,) B ) C_ ( A [,] B ) ) -> ( G |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
50 |
42 48 49
|
sylancl |
|- ( ph -> ( G |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
51 |
50
|
feqmptd |
|- ( ph -> ( G |` ( A (,) B ) ) = ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) ) |
52 |
|
nfmpt1 |
|- F/_ x ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
53 |
2 52
|
nfcxfr |
|- F/_ x G |
54 |
|
nfcv |
|- F/_ x ( A (,) B ) |
55 |
53 54
|
nfres |
|- F/_ x ( G |` ( A (,) B ) ) |
56 |
|
nfcv |
|- F/_ x y |
57 |
55 56
|
nffv |
|- F/_ x ( ( G |` ( A (,) B ) ) ` y ) |
58 |
|
nfcv |
|- F/_ y ( G |` ( A (,) B ) ) |
59 |
|
nfcv |
|- F/_ y x |
60 |
58 59
|
nffv |
|- F/_ y ( ( G |` ( A (,) B ) ) ` x ) |
61 |
|
fveq2 |
|- ( y = x -> ( ( G |` ( A (,) B ) ) ` y ) = ( ( G |` ( A (,) B ) ) ` x ) ) |
62 |
57 60 61
|
cbvmpt |
|- ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) = ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) ) |
63 |
62
|
a1i |
|- ( ph -> ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) = ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) ) ) |
64 |
|
fvres |
|- ( x e. ( A (,) B ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( G ` x ) ) |
65 |
64
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( G ` x ) ) |
66 |
|
simpr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
67 |
48 66
|
sselid |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
68 |
10
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> R e. CC ) |
69 |
13
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x = B ) -> L e. CC ) |
70 |
38
|
adantr |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. x = B ) -> ( F ` x ) e. CC ) |
71 |
69 70
|
ifclda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) e. CC ) |
72 |
68 71
|
ifcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
73 |
2
|
fvmpt2 |
|- ( ( x e. ( A [,] B ) /\ if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
74 |
67 72 73
|
syl2anc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
75 |
|
elioo4g |
|- ( x e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ x e. RR ) /\ ( A < x /\ x < B ) ) ) |
76 |
75
|
biimpi |
|- ( x e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* /\ x e. RR ) /\ ( A < x /\ x < B ) ) ) |
77 |
76
|
simpld |
|- ( x e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* /\ x e. RR ) ) |
78 |
77
|
simp1d |
|- ( x e. ( A (,) B ) -> A e. RR* ) |
79 |
|
elioore |
|- ( x e. ( A (,) B ) -> x e. RR ) |
80 |
79
|
rexrd |
|- ( x e. ( A (,) B ) -> x e. RR* ) |
81 |
|
eliooord |
|- ( x e. ( A (,) B ) -> ( A < x /\ x < B ) ) |
82 |
81
|
simpld |
|- ( x e. ( A (,) B ) -> A < x ) |
83 |
|
xrltne |
|- ( ( A e. RR* /\ x e. RR* /\ A < x ) -> x =/= A ) |
84 |
78 80 82 83
|
syl3anc |
|- ( x e. ( A (,) B ) -> x =/= A ) |
85 |
84
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A ) |
86 |
85
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A ) |
87 |
86
|
iffalsed |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
88 |
81
|
simprd |
|- ( x e. ( A (,) B ) -> x < B ) |
89 |
79 88
|
ltned |
|- ( x e. ( A (,) B ) -> x =/= B ) |
90 |
89
|
neneqd |
|- ( x e. ( A (,) B ) -> -. x = B ) |
91 |
90
|
iffalsed |
|- ( x e. ( A (,) B ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
92 |
91
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
93 |
87 92
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
94 |
65 74 93
|
3eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
95 |
1 94
|
mpteq2da |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) ) = ( x e. ( A (,) B ) |-> ( F ` x ) ) ) |
96 |
51 63 95
|
3eqtrd |
|- ( ph -> ( G |` ( A (,) B ) ) = ( x e. ( A (,) B ) |-> ( F ` x ) ) ) |
97 |
37
|
feqmptd |
|- ( ph -> F = ( x e. ( A (,) B ) |-> ( F ` x ) ) ) |
98 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
99 |
98
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
100 |
|
ssid |
|- CC C_ CC |
101 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
102 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
103 |
101
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
104 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
105 |
104
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
106 |
103 105
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
107 |
106
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
108 |
101 102 107
|
cncfcn |
|- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
109 |
99 100 108
|
sylancl |
|- ( ph -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
110 |
6 97 109
|
3eltr3d |
|- ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
111 |
96 110
|
eqeltrd |
|- ( ph -> ( G |` ( A (,) B ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
112 |
104
|
restuni |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,) B ) C_ CC ) -> ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
113 |
103 98 112
|
mp2an |
|- ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
114 |
113
|
cncnpi |
|- ( ( ( G |` ( A (,) B ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
115 |
111 114
|
sylan |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
116 |
103
|
a1i |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( TopOpen ` CCfld ) e. Top ) |
117 |
48
|
a1i |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ ( A [,] B ) ) |
118 |
|
ovex |
|- ( A [,] B ) e. _V |
119 |
118
|
a1i |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( A [,] B ) e. _V ) |
120 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,) B ) C_ ( A [,] B ) /\ ( A [,] B ) e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
121 |
116 117 119 120
|
syl3anc |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
122 |
121
|
eqcomd |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) ) |
123 |
122
|
oveq1d |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ) |
124 |
123
|
fveq1d |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
125 |
115 124
|
eleqtrd |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
126 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top ) |
127 |
103 118 126
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top |
128 |
127
|
a1i |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top ) |
129 |
48
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
130 |
3 4
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
131 |
|
ax-resscn |
|- RR C_ CC |
132 |
130 131
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
133 |
104
|
restuni |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) C_ CC ) -> ( A [,] B ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
134 |
103 132 133
|
sylancr |
|- ( ph -> ( A [,] B ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
135 |
129 134
|
sseqtrd |
|- ( ph -> ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
136 |
135
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
137 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
138 |
137
|
a1i |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( topGen ` ran (,) ) e. Top ) |
139 |
|
ioossre |
|- ( A (,) B ) C_ RR |
140 |
|
difss |
|- ( RR \ ( A [,] B ) ) C_ RR |
141 |
139 140
|
unssi |
|- ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR |
142 |
141
|
a1i |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR ) |
143 |
|
ssun1 |
|- ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) |
144 |
143
|
a1i |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
145 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
146 |
145
|
ntrss |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR /\ ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
147 |
138 142 144 146
|
syl3anc |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
148 |
|
simpr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( A (,) B ) ) |
149 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) |
150 |
148 149
|
eleqtrrdi |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) |
151 |
147 150
|
sseldd |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
152 |
48 148
|
sselid |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( A [,] B ) ) |
153 |
151 152
|
elind |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
154 |
130
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( A [,] B ) C_ RR ) |
155 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
156 |
145 155
|
restntr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR /\ ( A (,) B ) C_ ( A [,] B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
157 |
138 154 117 156
|
syl3anc |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
158 |
153 157
|
eleqtrrd |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) ) |
159 |
101
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
160 |
159
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) ) |
161 |
160
|
oveq1d |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) ) |
162 |
103
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
163 |
|
reex |
|- RR e. _V |
164 |
163
|
a1i |
|- ( ph -> RR e. _V ) |
165 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
166 |
162 130 164 165
|
syl3anc |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
167 |
161 166
|
eqtrd |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
168 |
167
|
fveq2d |
|- ( ph -> ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ) |
169 |
168
|
fveq1d |
|- ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) ) |
170 |
169
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) ) |
171 |
158 170
|
eleqtrd |
|- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) ) |
172 |
134
|
feq2d |
|- ( ph -> ( G : ( A [,] B ) --> CC <-> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) ) |
173 |
42 172
|
mpbid |
|- ( ph -> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) |
174 |
173
|
adantr |
|- ( ( ph /\ y e. ( A (,) B ) ) -> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) |
175 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |
176 |
175 104
|
cnprest |
|- ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top /\ ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) /\ ( y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) /\ G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
177 |
128 136 171 174 176
|
syl22anc |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
178 |
125 177
|
mpbird |
|- ( ( ph /\ y e. ( A (,) B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
179 |
|
elpri |
|- ( y e. { A , B } -> ( y = A \/ y = B ) ) |
180 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
181 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
182 |
23 25 27 181
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
183 |
2 180 182 8
|
fvmptd3 |
|- ( ph -> ( G ` A ) = R ) |
184 |
97
|
eqcomd |
|- ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) = F ) |
185 |
96 184
|
eqtr2d |
|- ( ph -> F = ( G |` ( A (,) B ) ) ) |
186 |
185
|
oveq1d |
|- ( ph -> ( F limCC A ) = ( ( G |` ( A (,) B ) ) limCC A ) ) |
187 |
8 186
|
eleqtrd |
|- ( ph -> R e. ( ( G |` ( A (,) B ) ) limCC A ) ) |
188 |
3 4 5 42
|
limciccioolb |
|- ( ph -> ( ( G |` ( A (,) B ) ) limCC A ) = ( G limCC A ) ) |
189 |
187 188
|
eleqtrd |
|- ( ph -> R e. ( G limCC A ) ) |
190 |
183 189
|
eqeltrd |
|- ( ph -> ( G ` A ) e. ( G limCC A ) ) |
191 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |
192 |
101 191
|
cnplimc |
|- ( ( ( A [,] B ) C_ CC /\ A e. ( A [,] B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` A ) e. ( G limCC A ) ) ) ) |
193 |
132 182 192
|
syl2anc |
|- ( ph -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` A ) e. ( G limCC A ) ) ) ) |
194 |
42 190 193
|
mpbir2and |
|- ( ph -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) ) |
195 |
194
|
adantr |
|- ( ( ph /\ y = A ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) ) |
196 |
|
fveq2 |
|- ( y = A -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) ) |
197 |
196
|
eqcomd |
|- ( y = A -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
198 |
197
|
adantl |
|- ( ( ph /\ y = A ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
199 |
195 198
|
eleqtrd |
|- ( ( ph /\ y = A ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
200 |
180
|
adantl |
|- ( ( x = B /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
201 |
|
eqtr2 |
|- ( ( x = B /\ x = A ) -> B = A ) |
202 |
|
iftrue |
|- ( B = A -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = R ) |
203 |
202
|
eqcomd |
|- ( B = A -> R = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
204 |
201 203
|
syl |
|- ( ( x = B /\ x = A ) -> R = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
205 |
200 204
|
eqtrd |
|- ( ( x = B /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
206 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
207 |
206
|
adantl |
|- ( ( x = B /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
208 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
209 |
208
|
adantr |
|- ( ( x = B /\ -. x = A ) -> if ( x = B , L , ( F ` x ) ) = L ) |
210 |
|
df-ne |
|- ( x =/= A <-> -. x = A ) |
211 |
|
pm13.18 |
|- ( ( x = B /\ x =/= A ) -> B =/= A ) |
212 |
210 211
|
sylan2br |
|- ( ( x = B /\ -. x = A ) -> B =/= A ) |
213 |
212
|
neneqd |
|- ( ( x = B /\ -. x = A ) -> -. B = A ) |
214 |
213
|
iffalsed |
|- ( ( x = B /\ -. x = A ) -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = if ( B = B , L , ( F ` B ) ) ) |
215 |
|
eqid |
|- B = B |
216 |
215
|
iftruei |
|- if ( B = B , L , ( F ` B ) ) = L |
217 |
214 216
|
eqtr2di |
|- ( ( x = B /\ -. x = A ) -> L = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
218 |
207 209 217
|
3eqtrd |
|- ( ( x = B /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
219 |
205 218
|
pm2.61dan |
|- ( x = B -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
220 |
4
|
leidd |
|- ( ph -> B <_ B ) |
221 |
3 4 4 27 220
|
eliccd |
|- ( ph -> B e. ( A [,] B ) ) |
222 |
216 13
|
eqeltrid |
|- ( ph -> if ( B = B , L , ( F ` B ) ) e. CC ) |
223 |
10 222
|
ifcld |
|- ( ph -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) e. CC ) |
224 |
2 219 221 223
|
fvmptd3 |
|- ( ph -> ( G ` B ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
225 |
3 5
|
gtned |
|- ( ph -> B =/= A ) |
226 |
225
|
neneqd |
|- ( ph -> -. B = A ) |
227 |
226
|
iffalsed |
|- ( ph -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = if ( B = B , L , ( F ` B ) ) ) |
228 |
216
|
a1i |
|- ( ph -> if ( B = B , L , ( F ` B ) ) = L ) |
229 |
224 227 228
|
3eqtrd |
|- ( ph -> ( G ` B ) = L ) |
230 |
185
|
oveq1d |
|- ( ph -> ( F limCC B ) = ( ( G |` ( A (,) B ) ) limCC B ) ) |
231 |
7 230
|
eleqtrd |
|- ( ph -> L e. ( ( G |` ( A (,) B ) ) limCC B ) ) |
232 |
3 4 5 42
|
limcicciooub |
|- ( ph -> ( ( G |` ( A (,) B ) ) limCC B ) = ( G limCC B ) ) |
233 |
231 232
|
eleqtrd |
|- ( ph -> L e. ( G limCC B ) ) |
234 |
229 233
|
eqeltrd |
|- ( ph -> ( G ` B ) e. ( G limCC B ) ) |
235 |
101 191
|
cnplimc |
|- ( ( ( A [,] B ) C_ CC /\ B e. ( A [,] B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` B ) e. ( G limCC B ) ) ) ) |
236 |
132 221 235
|
syl2anc |
|- ( ph -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` B ) e. ( G limCC B ) ) ) ) |
237 |
42 234 236
|
mpbir2and |
|- ( ph -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) ) |
238 |
237
|
adantr |
|- ( ( ph /\ y = B ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) ) |
239 |
|
fveq2 |
|- ( y = B -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) ) |
240 |
239
|
eqcomd |
|- ( y = B -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
241 |
240
|
adantl |
|- ( ( ph /\ y = B ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
242 |
238 241
|
eleqtrd |
|- ( ( ph /\ y = B ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
243 |
199 242
|
jaodan |
|- ( ( ph /\ ( y = A \/ y = B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
244 |
179 243
|
sylan2 |
|- ( ( ph /\ y e. { A , B } ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
245 |
178 244
|
jaodan |
|- ( ( ph /\ ( y e. ( A (,) B ) \/ y e. { A , B } ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
246 |
47 245
|
syldan |
|- ( ( ph /\ y e. ( A [,] B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
247 |
246
|
ralrimiva |
|- ( ph -> A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
248 |
101
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
249 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A [,] B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
250 |
248 132 249
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
251 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( G : ( A [,] B ) --> CC /\ A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) ) |
252 |
250 248 251
|
sylancl |
|- ( ph -> ( G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( G : ( A [,] B ) --> CC /\ A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) ) |
253 |
42 247 252
|
mpbir2and |
|- ( ph -> G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
254 |
101 191 107
|
cncfcn |
|- ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
255 |
132 100 254
|
sylancl |
|- ( ph -> ( ( A [,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
256 |
253 255
|
eleqtrrd |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |