Step |
Hyp |
Ref |
Expression |
1 |
|
cncfiooiccre.x |
|- F/ x ph |
2 |
|
cncfiooiccre.g |
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
3 |
|
cncfiooiccre.a |
|- ( ph -> A e. RR ) |
4 |
|
cncfiooiccre.b |
|- ( ph -> B e. RR ) |
5 |
|
cncfiooiccre.altb |
|- ( ph -> A < B ) |
6 |
|
cncfiooiccre.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
7 |
|
cncfiooiccre.l |
|- ( ph -> L e. ( F limCC B ) ) |
8 |
|
cncfiooiccre.r |
|- ( ph -> R e. ( F limCC A ) ) |
9 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
10 |
9
|
adantl |
|- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
11 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> RR ) -> F : ( A (,) B ) --> RR ) |
12 |
6 11
|
syl |
|- ( ph -> F : ( A (,) B ) --> RR ) |
13 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
14 |
13
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
15 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
16 |
4
|
rexrd |
|- ( ph -> B e. RR* ) |
17 |
15 16 3 5
|
lptioo1cn |
|- ( ph -> A e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) ) |
18 |
12 14 17 8
|
limcrecl |
|- ( ph -> R e. RR ) |
19 |
18
|
adantr |
|- ( ( ph /\ x = A ) -> R e. RR ) |
20 |
10 19
|
eqeltrd |
|- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
21 |
20
|
adantlr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
22 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
23 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
24 |
22 23
|
sylan9eq |
|- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
25 |
24
|
adantll |
|- ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
26 |
3
|
rexrd |
|- ( ph -> A e. RR* ) |
27 |
15 26 4 5
|
lptioo2cn |
|- ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) ) |
28 |
12 14 27 7
|
limcrecl |
|- ( ph -> L e. RR ) |
29 |
28
|
ad2antrr |
|- ( ( ( ph /\ -. x = A ) /\ x = B ) -> L e. RR ) |
30 |
25 29
|
eqeltrd |
|- ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
31 |
30
|
adantllr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
32 |
|
iffalse |
|- ( -. x = B -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
33 |
22 32
|
sylan9eq |
|- ( ( -. x = A /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
34 |
33
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
35 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> F : ( A (,) B ) --> RR ) |
36 |
26
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
37 |
16
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
38 |
3
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
39 |
4
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
40 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
41 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
42 |
38 39 40 41
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
43 |
42
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR ) |
44 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR ) |
45 |
42
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR ) |
46 |
26
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR* ) |
47 |
16
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> B e. RR* ) |
48 |
40
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. ( A [,] B ) ) |
49 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) |
50 |
46 47 48 49
|
syl3anc |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x ) |
51 |
|
neqne |
|- ( -. x = A -> x =/= A ) |
52 |
51
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A ) |
53 |
44 45 50 52
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x ) |
54 |
53
|
adantr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x ) |
55 |
42
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. RR ) |
56 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR ) |
57 |
26
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> A e. RR* ) |
58 |
16
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR* ) |
59 |
40
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. ( A [,] B ) ) |
60 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
61 |
57 58 59 60
|
syl3anc |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x <_ B ) |
62 |
|
neqne |
|- ( -. x = B -> x =/= B ) |
63 |
62
|
necomd |
|- ( -. x = B -> B =/= x ) |
64 |
63
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x ) |
65 |
55 56 61 64
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B ) |
66 |
65
|
adantlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B ) |
67 |
36 37 43 54 66
|
eliood |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
68 |
35 67
|
ffvelrnd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. RR ) |
69 |
34 68
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
70 |
31 69
|
pm2.61dan |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
71 |
21 70
|
pm2.61dan |
|- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR ) |
72 |
71 2
|
fmptd |
|- ( ph -> G : ( A [,] B ) --> RR ) |
73 |
|
ax-resscn |
|- RR C_ CC |
74 |
|
ssid |
|- CC C_ CC |
75 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) ) |
76 |
73 74 75
|
mp2an |
|- ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) |
77 |
76 6
|
sselid |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
78 |
1 2 3 4 77 7 8
|
cncfiooicc |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
79 |
|
cncffvrn |
|- ( ( RR C_ CC /\ G e. ( ( A [,] B ) -cn-> CC ) ) -> ( G e. ( ( A [,] B ) -cn-> RR ) <-> G : ( A [,] B ) --> RR ) ) |
80 |
73 78 79
|
sylancr |
|- ( ph -> ( G e. ( ( A [,] B ) -cn-> RR ) <-> G : ( A [,] B ) --> RR ) ) |
81 |
72 80
|
mpbird |
|- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |