| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cncfiooiccre.x | 
							 |-  F/ x ph  | 
						
						
							| 2 | 
							
								
							 | 
							cncfiooiccre.g | 
							 |-  G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cncfiooiccre.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							cncfiooiccre.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							cncfiooiccre.altb | 
							 |-  ( ph -> A < B )  | 
						
						
							| 6 | 
							
								
							 | 
							cncfiooiccre.f | 
							 |-  ( ph -> F e. ( ( A (,) B ) -cn-> RR ) )  | 
						
						
							| 7 | 
							
								
							 | 
							cncfiooiccre.l | 
							 |-  ( ph -> L e. ( F limCC B ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cncfiooiccre.r | 
							 |-  ( ph -> R e. ( F limCC A ) )  | 
						
						
							| 9 | 
							
								
							 | 
							iftrue | 
							 |-  ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							 |-  ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R )  | 
						
						
							| 11 | 
							
								
							 | 
							cncff | 
							 |-  ( F e. ( ( A (,) B ) -cn-> RR ) -> F : ( A (,) B ) --> RR )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							syl | 
							 |-  ( ph -> F : ( A (,) B ) --> RR )  | 
						
						
							| 13 | 
							
								
							 | 
							ioosscn | 
							 |-  ( A (,) B ) C_ CC  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							 |-  ( ph -> ( A (,) B ) C_ CC )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )  | 
						
						
							| 16 | 
							
								4
							 | 
							rexrd | 
							 |-  ( ph -> B e. RR* )  | 
						
						
							| 17 | 
							
								15 16 3 5
							 | 
							lptioo1cn | 
							 |-  ( ph -> A e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) )  | 
						
						
							| 18 | 
							
								12 14 17 8
							 | 
							limcrecl | 
							 |-  ( ph -> R e. RR )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( ph /\ x = A ) -> R e. RR )  | 
						
						
							| 20 | 
							
								10 19
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR )  | 
						
						
							| 22 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							iftrue | 
							 |-  ( x = B -> if ( x = B , L , ( F ` x ) ) = L )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylan9eq | 
							 |-  ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantll | 
							 |-  ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L )  | 
						
						
							| 26 | 
							
								3
							 | 
							rexrd | 
							 |-  ( ph -> A e. RR* )  | 
						
						
							| 27 | 
							
								15 26 4 5
							 | 
							lptioo2cn | 
							 |-  ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) )  | 
						
						
							| 28 | 
							
								12 14 27 7
							 | 
							limcrecl | 
							 |-  ( ph -> L e. RR )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ -. x = A ) /\ x = B ) -> L e. RR )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantllr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR )  | 
						
						
							| 32 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. x = B -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) )  | 
						
						
							| 33 | 
							
								22 32
							 | 
							sylan9eq | 
							 |-  ( ( -. x = A /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantll | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) )  | 
						
						
							| 35 | 
							
								12
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> F : ( A (,) B ) --> RR )  | 
						
						
							| 36 | 
							
								26
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* )  | 
						
						
							| 37 | 
							
								16
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* )  | 
						
						
							| 38 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR )  | 
						
						
							| 39 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR )  | 
						
						
							| 40 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eliccre | 
							 |-  ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR )  | 
						
						
							| 42 | 
							
								38 39 40 41
							 | 
							syl3anc | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR )  | 
						
						
							| 43 | 
							
								42
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR )  | 
						
						
							| 44 | 
							
								3
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR )  | 
						
						
							| 45 | 
							
								42
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR )  | 
						
						
							| 46 | 
							
								26
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR* )  | 
						
						
							| 47 | 
							
								16
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> B e. RR* )  | 
						
						
							| 48 | 
							
								40
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. ( A [,] B ) )  | 
						
						
							| 49 | 
							
								
							 | 
							iccgelb | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x )  | 
						
						
							| 50 | 
							
								46 47 48 49
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x )  | 
						
						
							| 51 | 
							
								
							 | 
							neqne | 
							 |-  ( -. x = A -> x =/= A )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A )  | 
						
						
							| 53 | 
							
								44 45 50 52
							 | 
							leneltd | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x )  | 
						
						
							| 55 | 
							
								42
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. RR )  | 
						
						
							| 56 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR )  | 
						
						
							| 57 | 
							
								26
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> A e. RR* )  | 
						
						
							| 58 | 
							
								16
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR* )  | 
						
						
							| 59 | 
							
								40
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. ( A [,] B ) )  | 
						
						
							| 60 | 
							
								
							 | 
							iccleub | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B )  | 
						
						
							| 61 | 
							
								57 58 59 60
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x <_ B )  | 
						
						
							| 62 | 
							
								
							 | 
							neqne | 
							 |-  ( -. x = B -> x =/= B )  | 
						
						
							| 63 | 
							
								62
							 | 
							necomd | 
							 |-  ( -. x = B -> B =/= x )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x )  | 
						
						
							| 65 | 
							
								55 56 61 64
							 | 
							leneltd | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantlr | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B )  | 
						
						
							| 67 | 
							
								36 37 43 54 66
							 | 
							eliood | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) )  | 
						
						
							| 68 | 
							
								35 67
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. RR )  | 
						
						
							| 69 | 
							
								34 68
							 | 
							eqeltrd | 
							 |-  ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR )  | 
						
						
							| 70 | 
							
								31 69
							 | 
							pm2.61dan | 
							 |-  ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR )  | 
						
						
							| 71 | 
							
								21 70
							 | 
							pm2.61dan | 
							 |-  ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. RR )  | 
						
						
							| 72 | 
							
								71 2
							 | 
							fmptd | 
							 |-  ( ph -> G : ( A [,] B ) --> RR )  | 
						
						
							| 73 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 74 | 
							
								
							 | 
							ssid | 
							 |-  CC C_ CC  | 
						
						
							| 75 | 
							
								
							 | 
							cncfss | 
							 |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) )  | 
						
						
							| 76 | 
							
								73 74 75
							 | 
							mp2an | 
							 |-  ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC )  | 
						
						
							| 77 | 
							
								76 6
							 | 
							sselid | 
							 |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )  | 
						
						
							| 78 | 
							
								1 2 3 4 77 7 8
							 | 
							cncfiooicc | 
							 |-  ( ph -> G e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 79 | 
							
								
							 | 
							cncfcdm | 
							 |-  ( ( RR C_ CC /\ G e. ( ( A [,] B ) -cn-> CC ) ) -> ( G e. ( ( A [,] B ) -cn-> RR ) <-> G : ( A [,] B ) --> RR ) )  | 
						
						
							| 80 | 
							
								73 78 79
							 | 
							sylancr | 
							 |-  ( ph -> ( G e. ( ( A [,] B ) -cn-> RR ) <-> G : ( A [,] B ) --> RR ) )  | 
						
						
							| 81 | 
							
								72 80
							 | 
							mpbird | 
							 |-  ( ph -> G e. ( ( A [,] B ) -cn-> RR ) )  |