| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncfmpt2f.1 |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 2 |  | cncfmpt2f.2 |  |-  ( ph -> F e. ( ( J tX J ) Cn J ) ) | 
						
							| 3 |  | cncfmpt2f.3 |  |-  ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) | 
						
							| 4 |  | cncfmpt2f.4 |  |-  ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) | 
						
							| 5 | 1 | cnfldtopon |  |-  J e. ( TopOn ` CC ) | 
						
							| 6 |  | cncfrss |  |-  ( ( x e. X |-> A ) e. ( X -cn-> CC ) -> X C_ CC ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> X C_ CC ) | 
						
							| 8 |  | resttopon |  |-  ( ( J e. ( TopOn ` CC ) /\ X C_ CC ) -> ( J |`t X ) e. ( TopOn ` X ) ) | 
						
							| 9 | 5 7 8 | sylancr |  |-  ( ph -> ( J |`t X ) e. ( TopOn ` X ) ) | 
						
							| 10 |  | ssid |  |-  CC C_ CC | 
						
							| 11 |  | eqid |  |-  ( J |`t X ) = ( J |`t X ) | 
						
							| 12 | 5 | toponrestid |  |-  J = ( J |`t CC ) | 
						
							| 13 | 1 11 12 | cncfcn |  |-  ( ( X C_ CC /\ CC C_ CC ) -> ( X -cn-> CC ) = ( ( J |`t X ) Cn J ) ) | 
						
							| 14 | 7 10 13 | sylancl |  |-  ( ph -> ( X -cn-> CC ) = ( ( J |`t X ) Cn J ) ) | 
						
							| 15 | 3 14 | eleqtrd |  |-  ( ph -> ( x e. X |-> A ) e. ( ( J |`t X ) Cn J ) ) | 
						
							| 16 | 4 14 | eleqtrd |  |-  ( ph -> ( x e. X |-> B ) e. ( ( J |`t X ) Cn J ) ) | 
						
							| 17 | 9 15 16 2 | cnmpt12f |  |-  ( ph -> ( x e. X |-> ( A F B ) ) e. ( ( J |`t X ) Cn J ) ) | 
						
							| 18 | 17 14 | eleqtrrd |  |-  ( ph -> ( x e. X |-> ( A F B ) ) e. ( X -cn-> CC ) ) |