Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
2 |
1
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
3 |
|
simp2 |
|- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> S C_ CC ) |
4 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
5 |
2 3 4
|
sylancr |
|- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
6 |
|
simp3 |
|- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> T C_ CC ) |
7 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ T C_ CC ) -> ( ( TopOpen ` CCfld ) |`t T ) e. ( TopOn ` T ) ) |
8 |
2 6 7
|
sylancr |
|- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( ( TopOpen ` CCfld ) |`t T ) e. ( TopOn ` T ) ) |
9 |
|
simp1 |
|- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> A e. T ) |
10 |
5 8 9
|
cnmptc |
|- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( x e. S |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t T ) ) ) |
11 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
12 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t T ) = ( ( TopOpen ` CCfld ) |`t T ) |
13 |
1 11 12
|
cncfcn |
|- ( ( S C_ CC /\ T C_ CC ) -> ( S -cn-> T ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t T ) ) ) |
14 |
13
|
3adant1 |
|- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( S -cn-> T ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t T ) ) ) |
15 |
10 14
|
eleqtrrd |
|- ( ( A e. T /\ S C_ CC /\ T C_ CC ) -> ( x e. S |-> A ) e. ( S -cn-> T ) ) |