Step |
Hyp |
Ref |
Expression |
1 |
|
cncfss |
|- ( ( S C_ T /\ T C_ CC ) -> ( S -cn-> S ) C_ ( S -cn-> T ) ) |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
4 |
|
sstr |
|- ( ( S C_ T /\ T C_ CC ) -> S C_ CC ) |
5 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
6 |
3 4 5
|
sylancr |
|- ( ( S C_ T /\ T C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
7 |
6
|
cnmptid |
|- ( ( S C_ T /\ T C_ CC ) -> ( x e. S |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t S ) ) ) |
8 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
9 |
2 8 8
|
cncfcn |
|- ( ( S C_ CC /\ S C_ CC ) -> ( S -cn-> S ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t S ) ) ) |
10 |
4 4 9
|
syl2anc |
|- ( ( S C_ T /\ T C_ CC ) -> ( S -cn-> S ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t S ) ) ) |
11 |
7 10
|
eleqtrrd |
|- ( ( S C_ T /\ T C_ CC ) -> ( x e. S |-> x ) e. ( S -cn-> S ) ) |
12 |
1 11
|
sseldd |
|- ( ( S C_ T /\ T C_ CC ) -> ( x e. S |-> x ) e. ( S -cn-> T ) ) |