Step |
Hyp |
Ref |
Expression |
1 |
|
cncfmptss.1 |
|- F/_ x F |
2 |
|
cncfmptss.2 |
|- ( ph -> F e. ( A -cn-> B ) ) |
3 |
|
cncfmptss.3 |
|- ( ph -> C C_ A ) |
4 |
3
|
resmptd |
|- ( ph -> ( ( y e. A |-> ( F ` y ) ) |` C ) = ( y e. C |-> ( F ` y ) ) ) |
5 |
|
cncff |
|- ( F e. ( A -cn-> B ) -> F : A --> B ) |
6 |
2 5
|
syl |
|- ( ph -> F : A --> B ) |
7 |
6
|
feqmptd |
|- ( ph -> F = ( y e. A |-> ( F ` y ) ) ) |
8 |
7
|
reseq1d |
|- ( ph -> ( F |` C ) = ( ( y e. A |-> ( F ` y ) ) |` C ) ) |
9 |
|
nfcv |
|- F/_ y F |
10 |
|
nfcv |
|- F/_ y x |
11 |
9 10
|
nffv |
|- F/_ y ( F ` x ) |
12 |
|
nfcv |
|- F/_ x y |
13 |
1 12
|
nffv |
|- F/_ x ( F ` y ) |
14 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
15 |
11 13 14
|
cbvmpt |
|- ( x e. C |-> ( F ` x ) ) = ( y e. C |-> ( F ` y ) ) |
16 |
15
|
a1i |
|- ( ph -> ( x e. C |-> ( F ` x ) ) = ( y e. C |-> ( F ` y ) ) ) |
17 |
4 8 16
|
3eqtr4rd |
|- ( ph -> ( x e. C |-> ( F ` x ) ) = ( F |` C ) ) |
18 |
|
rescncf |
|- ( C C_ A -> ( F e. ( A -cn-> B ) -> ( F |` C ) e. ( C -cn-> B ) ) ) |
19 |
3 2 18
|
sylc |
|- ( ph -> ( F |` C ) e. ( C -cn-> B ) ) |
20 |
17 19
|
eqeltrd |
|- ( ph -> ( x e. C |-> ( F ` x ) ) e. ( C -cn-> B ) ) |