Step |
Hyp |
Ref |
Expression |
1 |
|
cncfperiod.a |
|- ( ph -> A C_ CC ) |
2 |
|
cncfperiod.t |
|- ( ph -> T e. RR ) |
3 |
|
cncfperiod.b |
|- B = { x e. CC | E. y e. A x = ( y + T ) } |
4 |
|
cncfperiod.f |
|- ( ph -> F : dom F --> CC ) |
5 |
|
cncfperiod.cssdmf |
|- ( ph -> B C_ dom F ) |
6 |
|
cncfperiod.fper |
|- ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
7 |
|
cncfperiod.fcn |
|- ( ph -> ( F |` A ) e. ( A -cn-> CC ) ) |
8 |
4 5
|
fssresd |
|- ( ph -> ( F |` B ) : B --> CC ) |
9 |
|
fvoveq1 |
|- ( a = ( x - T ) -> ( abs ` ( a - b ) ) = ( abs ` ( ( x - T ) - b ) ) ) |
10 |
9
|
breq1d |
|- ( a = ( x - T ) -> ( ( abs ` ( a - b ) ) < z <-> ( abs ` ( ( x - T ) - b ) ) < z ) ) |
11 |
10
|
imbrov2fvoveq |
|- ( a = ( x - T ) -> ( ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) |
12 |
11
|
rexralbidv |
|- ( a = ( x - T ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) <-> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) |
13 |
12
|
ralbidv |
|- ( a = ( x - T ) -> ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) <-> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) |
14 |
7
|
adantr |
|- ( ( ph /\ x e. B ) -> ( F |` A ) e. ( A -cn-> CC ) ) |
15 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> A C_ CC ) |
16 |
|
ssidd |
|- ( ( ph /\ x e. B ) -> CC C_ CC ) |
17 |
|
elcncf |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( ( F |` A ) e. ( A -cn-> CC ) <-> ( ( F |` A ) : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) ) |
18 |
15 16 17
|
syl2anc |
|- ( ( ph /\ x e. B ) -> ( ( F |` A ) e. ( A -cn-> CC ) <-> ( ( F |` A ) : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) ) |
19 |
14 18
|
mpbid |
|- ( ( ph /\ x e. B ) -> ( ( F |` A ) : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) ) ) |
20 |
19
|
simprd |
|- ( ( ph /\ x e. B ) -> A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` a ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
21 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
22 |
21 3
|
eleqtrdi |
|- ( ( ph /\ x e. B ) -> x e. { x e. CC | E. y e. A x = ( y + T ) } ) |
23 |
|
rabid |
|- ( x e. { x e. CC | E. y e. A x = ( y + T ) } <-> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) |
24 |
22 23
|
sylib |
|- ( ( ph /\ x e. B ) -> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) |
25 |
24
|
simprd |
|- ( ( ph /\ x e. B ) -> E. y e. A x = ( y + T ) ) |
26 |
|
oveq1 |
|- ( x = ( y + T ) -> ( x - T ) = ( ( y + T ) - T ) ) |
27 |
26
|
3ad2ant3 |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = ( ( y + T ) - T ) ) |
28 |
1
|
sselda |
|- ( ( ph /\ y e. A ) -> y e. CC ) |
29 |
2
|
recnd |
|- ( ph -> T e. CC ) |
30 |
29
|
adantr |
|- ( ( ph /\ y e. A ) -> T e. CC ) |
31 |
28 30
|
pncand |
|- ( ( ph /\ y e. A ) -> ( ( y + T ) - T ) = y ) |
32 |
31
|
adantlr |
|- ( ( ( ph /\ x e. B ) /\ y e. A ) -> ( ( y + T ) - T ) = y ) |
33 |
32
|
3adant3 |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( ( y + T ) - T ) = y ) |
34 |
27 33
|
eqtrd |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = y ) |
35 |
|
simp2 |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> y e. A ) |
36 |
34 35
|
eqeltrd |
|- ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) e. A ) |
37 |
36
|
rexlimdv3a |
|- ( ( ph /\ x e. B ) -> ( E. y e. A x = ( y + T ) -> ( x - T ) e. A ) ) |
38 |
25 37
|
mpd |
|- ( ( ph /\ x e. B ) -> ( x - T ) e. A ) |
39 |
13 20 38
|
rspcdva |
|- ( ( ph /\ x e. B ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
40 |
39
|
adantrr |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
41 |
|
simprr |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> w e. RR+ ) |
42 |
|
rspa |
|- ( ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) /\ w e. RR+ ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
43 |
40 41 42
|
syl2anc |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
44 |
|
simpl1l |
|- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) -> ph ) |
45 |
44
|
adantr |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ph ) |
46 |
|
simp1rl |
|- ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) -> x e. B ) |
47 |
46
|
adantr |
|- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) -> x e. B ) |
48 |
47
|
adantr |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> x e. B ) |
49 |
|
simplr |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> v e. B ) |
50 |
|
fvres |
|- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ x e. B ) -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
52 |
3
|
ssrab3 |
|- B C_ CC |
53 |
52
|
sseli |
|- ( x e. B -> x e. CC ) |
54 |
53
|
adantl |
|- ( ( ph /\ x e. B ) -> x e. CC ) |
55 |
29
|
adantr |
|- ( ( ph /\ x e. B ) -> T e. CC ) |
56 |
54 55
|
npcand |
|- ( ( ph /\ x e. B ) -> ( ( x - T ) + T ) = x ) |
57 |
56
|
eqcomd |
|- ( ( ph /\ x e. B ) -> x = ( ( x - T ) + T ) ) |
58 |
57
|
fveq2d |
|- ( ( ph /\ x e. B ) -> ( F ` x ) = ( F ` ( ( x - T ) + T ) ) ) |
59 |
|
simpl |
|- ( ( ph /\ x e. B ) -> ph ) |
60 |
59 38
|
jca |
|- ( ( ph /\ x e. B ) -> ( ph /\ ( x - T ) e. A ) ) |
61 |
|
eleq1 |
|- ( y = ( x - T ) -> ( y e. A <-> ( x - T ) e. A ) ) |
62 |
61
|
anbi2d |
|- ( y = ( x - T ) -> ( ( ph /\ y e. A ) <-> ( ph /\ ( x - T ) e. A ) ) ) |
63 |
|
fvoveq1 |
|- ( y = ( x - T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x - T ) + T ) ) ) |
64 |
|
fveq2 |
|- ( y = ( x - T ) -> ( F ` y ) = ( F ` ( x - T ) ) ) |
65 |
63 64
|
eqeq12d |
|- ( y = ( x - T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
66 |
62 65
|
imbi12d |
|- ( y = ( x - T ) -> ( ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x - T ) e. A ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) ) |
67 |
|
eleq1 |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
68 |
67
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. A ) <-> ( ph /\ y e. A ) ) ) |
69 |
|
fvoveq1 |
|- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
70 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
71 |
69 70
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
72 |
68 71
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
73 |
72 6
|
chvarvv |
|- ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
74 |
66 73
|
vtoclg |
|- ( ( x - T ) e. A -> ( ( ph /\ ( x - T ) e. A ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
75 |
38 60 74
|
sylc |
|- ( ( ph /\ x e. B ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) |
76 |
38
|
fvresd |
|- ( ( ph /\ x e. B ) -> ( ( F |` A ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
77 |
75 76
|
eqtr4d |
|- ( ( ph /\ x e. B ) -> ( F ` ( ( x - T ) + T ) ) = ( ( F |` A ) ` ( x - T ) ) ) |
78 |
51 58 77
|
3eqtrd |
|- ( ( ph /\ x e. B ) -> ( ( F |` B ) ` x ) = ( ( F |` A ) ` ( x - T ) ) ) |
79 |
78
|
3adant3 |
|- ( ( ph /\ x e. B /\ v e. B ) -> ( ( F |` B ) ` x ) = ( ( F |` A ) ` ( x - T ) ) ) |
80 |
|
eleq1 |
|- ( x = v -> ( x e. B <-> v e. B ) ) |
81 |
80
|
anbi2d |
|- ( x = v -> ( ( ph /\ x e. B ) <-> ( ph /\ v e. B ) ) ) |
82 |
|
fveq2 |
|- ( x = v -> ( ( F |` B ) ` x ) = ( ( F |` B ) ` v ) ) |
83 |
|
fvoveq1 |
|- ( x = v -> ( ( F |` A ) ` ( x - T ) ) = ( ( F |` A ) ` ( v - T ) ) ) |
84 |
82 83
|
eqeq12d |
|- ( x = v -> ( ( ( F |` B ) ` x ) = ( ( F |` A ) ` ( x - T ) ) <-> ( ( F |` B ) ` v ) = ( ( F |` A ) ` ( v - T ) ) ) ) |
85 |
81 84
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. B ) -> ( ( F |` B ) ` x ) = ( ( F |` A ) ` ( x - T ) ) ) <-> ( ( ph /\ v e. B ) -> ( ( F |` B ) ` v ) = ( ( F |` A ) ` ( v - T ) ) ) ) ) |
86 |
85 78
|
chvarvv |
|- ( ( ph /\ v e. B ) -> ( ( F |` B ) ` v ) = ( ( F |` A ) ` ( v - T ) ) ) |
87 |
86
|
3adant2 |
|- ( ( ph /\ x e. B /\ v e. B ) -> ( ( F |` B ) ` v ) = ( ( F |` A ) ` ( v - T ) ) ) |
88 |
79 87
|
oveq12d |
|- ( ( ph /\ x e. B /\ v e. B ) -> ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) = ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) |
89 |
88
|
fveq2d |
|- ( ( ph /\ x e. B /\ v e. B ) -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) = ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) ) |
90 |
45 48 49 89
|
syl3anc |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) = ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) ) |
91 |
|
simpr |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) |
92 |
24
|
simpld |
|- ( ( ph /\ x e. B ) -> x e. CC ) |
93 |
92
|
adantr |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> x e. CC ) |
94 |
52
|
sseli |
|- ( v e. B -> v e. CC ) |
95 |
94
|
adantl |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> v e. CC ) |
96 |
55
|
adantr |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> T e. CC ) |
97 |
93 95 96
|
nnncan2d |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( ( x - T ) - ( v - T ) ) = ( x - v ) ) |
98 |
97
|
fveq2d |
|- ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) |
99 |
98
|
adantr |
|- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) |
100 |
|
simpr |
|- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) |
101 |
99 100
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) |
102 |
45 48 49 91 101
|
syl1111anc |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) |
103 |
|
oveq2 |
|- ( b = ( v - T ) -> ( ( x - T ) - b ) = ( ( x - T ) - ( v - T ) ) ) |
104 |
103
|
fveq2d |
|- ( b = ( v - T ) -> ( abs ` ( ( x - T ) - b ) ) = ( abs ` ( ( x - T ) - ( v - T ) ) ) ) |
105 |
104
|
breq1d |
|- ( b = ( v - T ) -> ( ( abs ` ( ( x - T ) - b ) ) < z <-> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) ) |
106 |
|
fveq2 |
|- ( b = ( v - T ) -> ( ( F |` A ) ` b ) = ( ( F |` A ) ` ( v - T ) ) ) |
107 |
106
|
oveq2d |
|- ( b = ( v - T ) -> ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) = ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) |
108 |
107
|
fveq2d |
|- ( b = ( v - T ) -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) = ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) ) |
109 |
108
|
breq1d |
|- ( b = ( v - T ) -> ( ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w <-> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) < w ) ) |
110 |
105 109
|
imbi12d |
|- ( b = ( v - T ) -> ( ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) < w ) ) ) |
111 |
|
simpll3 |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) |
112 |
|
oveq1 |
|- ( x = v -> ( x - T ) = ( v - T ) ) |
113 |
112
|
eleq1d |
|- ( x = v -> ( ( x - T ) e. A <-> ( v - T ) e. A ) ) |
114 |
81 113
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. B ) -> ( x - T ) e. A ) <-> ( ( ph /\ v e. B ) -> ( v - T ) e. A ) ) ) |
115 |
114 38
|
chvarvv |
|- ( ( ph /\ v e. B ) -> ( v - T ) e. A ) |
116 |
45 49 115
|
syl2anc |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( v - T ) e. A ) |
117 |
110 111 116
|
rspcdva |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) < w ) ) |
118 |
102 117
|
mpd |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` ( v - T ) ) ) ) < w ) |
119 |
90 118
|
eqbrtrd |
|- ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) |
120 |
119
|
ex |
|- ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) /\ v e. B ) -> ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) |
121 |
120
|
ralrimiva |
|- ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) |
122 |
121
|
3exp |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( z e. RR+ -> ( A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) ) ) |
123 |
122
|
reximdvai |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( ( F |` A ) ` ( x - T ) ) - ( ( F |` A ) ` b ) ) ) < w ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) ) |
124 |
43 123
|
mpd |
|- ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) |
125 |
124
|
ralrimivva |
|- ( ph -> A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) |
126 |
52
|
a1i |
|- ( ph -> B C_ CC ) |
127 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
128 |
|
elcncf |
|- ( ( B C_ CC /\ CC C_ CC ) -> ( ( F |` B ) e. ( B -cn-> CC ) <-> ( ( F |` B ) : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) ) ) |
129 |
126 127 128
|
syl2anc |
|- ( ph -> ( ( F |` B ) e. ( B -cn-> CC ) <-> ( ( F |` B ) : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( ( F |` B ) ` x ) - ( ( F |` B ) ` v ) ) ) < w ) ) ) ) |
130 |
8 125 129
|
mpbir2and |
|- ( ph -> ( F |` B ) e. ( B -cn-> CC ) ) |