| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cncfshift.a |  |-  ( ph -> A C_ CC ) | 
						
							| 2 |  | cncfshift.t |  |-  ( ph -> T e. CC ) | 
						
							| 3 |  | cncfshift.b |  |-  B = { x e. CC | E. y e. A x = ( y + T ) } | 
						
							| 4 |  | cncfshift.f |  |-  ( ph -> F e. ( A -cn-> CC ) ) | 
						
							| 5 |  | cncfshift.g |  |-  G = ( x e. B |-> ( F ` ( x - T ) ) ) | 
						
							| 6 |  | cncff |  |-  ( F e. ( A -cn-> CC ) -> F : A --> CC ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> F : A --> CC ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ph /\ x e. B ) -> F : A --> CC ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 10 | 9 3 | eleqtrdi |  |-  ( ( ph /\ x e. B ) -> x e. { x e. CC | E. y e. A x = ( y + T ) } ) | 
						
							| 11 |  | rabid |  |-  ( x e. { x e. CC | E. y e. A x = ( y + T ) } <-> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ( ph /\ x e. B ) -> ( x e. CC /\ E. y e. A x = ( y + T ) ) ) | 
						
							| 13 | 12 | simprd |  |-  ( ( ph /\ x e. B ) -> E. y e. A x = ( y + T ) ) | 
						
							| 14 |  | oveq1 |  |-  ( x = ( y + T ) -> ( x - T ) = ( ( y + T ) - T ) ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = ( ( y + T ) - T ) ) | 
						
							| 16 | 1 | sselda |  |-  ( ( ph /\ y e. A ) -> y e. CC ) | 
						
							| 17 | 2 | adantr |  |-  ( ( ph /\ y e. A ) -> T e. CC ) | 
						
							| 18 | 16 17 | pncand |  |-  ( ( ph /\ y e. A ) -> ( ( y + T ) - T ) = y ) | 
						
							| 19 | 18 | adantlr |  |-  ( ( ( ph /\ x e. B ) /\ y e. A ) -> ( ( y + T ) - T ) = y ) | 
						
							| 20 | 19 | 3adant3 |  |-  ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( ( y + T ) - T ) = y ) | 
						
							| 21 | 15 20 | eqtrd |  |-  ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) = y ) | 
						
							| 22 |  | simp2 |  |-  ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> y e. A ) | 
						
							| 23 | 21 22 | eqeltrd |  |-  ( ( ( ph /\ x e. B ) /\ y e. A /\ x = ( y + T ) ) -> ( x - T ) e. A ) | 
						
							| 24 | 23 | rexlimdv3a |  |-  ( ( ph /\ x e. B ) -> ( E. y e. A x = ( y + T ) -> ( x - T ) e. A ) ) | 
						
							| 25 | 13 24 | mpd |  |-  ( ( ph /\ x e. B ) -> ( x - T ) e. A ) | 
						
							| 26 | 8 25 | ffvelcdmd |  |-  ( ( ph /\ x e. B ) -> ( F ` ( x - T ) ) e. CC ) | 
						
							| 27 | 26 5 | fmptd |  |-  ( ph -> G : B --> CC ) | 
						
							| 28 |  | fvoveq1 |  |-  ( a = ( x - T ) -> ( abs ` ( a - b ) ) = ( abs ` ( ( x - T ) - b ) ) ) | 
						
							| 29 | 28 | breq1d |  |-  ( a = ( x - T ) -> ( ( abs ` ( a - b ) ) < z <-> ( abs ` ( ( x - T ) - b ) ) < z ) ) | 
						
							| 30 | 29 | imbrov2fvoveq |  |-  ( a = ( x - T ) -> ( ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) | 
						
							| 31 | 30 | rexralbidv |  |-  ( a = ( x - T ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) | 
						
							| 32 | 31 | ralbidv |  |-  ( a = ( x - T ) -> ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) <-> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) ) | 
						
							| 33 | 4 | adantr |  |-  ( ( ph /\ x e. B ) -> F e. ( A -cn-> CC ) ) | 
						
							| 34 | 1 | adantr |  |-  ( ( ph /\ x e. B ) -> A C_ CC ) | 
						
							| 35 |  | ssid |  |-  CC C_ CC | 
						
							| 36 |  | elcncf |  |-  ( ( A C_ CC /\ CC C_ CC ) -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) ) | 
						
							| 37 | 34 35 36 | sylancl |  |-  ( ( ph /\ x e. B ) -> ( F e. ( A -cn-> CC ) <-> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) ) | 
						
							| 38 | 33 37 | mpbid |  |-  ( ( ph /\ x e. B ) -> ( F : A --> CC /\ A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) ) | 
						
							| 39 | 38 | simprd |  |-  ( ( ph /\ x e. B ) -> A. a e. A A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( a - b ) ) < z -> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) < w ) ) | 
						
							| 40 | 32 39 25 | rspcdva |  |-  ( ( ph /\ x e. B ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) | 
						
							| 41 | 40 | adantrr |  |-  ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) | 
						
							| 42 |  | simprr |  |-  ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> w e. RR+ ) | 
						
							| 43 |  | rspa |  |-  ( ( A. w e. RR+ E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) /\ w e. RR+ ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) | 
						
							| 44 | 41 42 43 | syl2anc |  |-  ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) | 
						
							| 45 |  | simpl1l |  |-  ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) -> ph ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ph ) | 
						
							| 47 |  | simp1rl |  |-  ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) -> x e. B ) | 
						
							| 48 | 47 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> x e. B ) | 
						
							| 49 |  | simplr |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> v e. B ) | 
						
							| 50 | 5 | fvmpt2 |  |-  ( ( x e. B /\ ( F ` ( x - T ) ) e. CC ) -> ( G ` x ) = ( F ` ( x - T ) ) ) | 
						
							| 51 | 9 26 50 | syl2anc |  |-  ( ( ph /\ x e. B ) -> ( G ` x ) = ( F ` ( x - T ) ) ) | 
						
							| 52 | 51 | 3adant3 |  |-  ( ( ph /\ x e. B /\ v e. B ) -> ( G ` x ) = ( F ` ( x - T ) ) ) | 
						
							| 53 |  | fvoveq1 |  |-  ( x = v -> ( F ` ( x - T ) ) = ( F ` ( v - T ) ) ) | 
						
							| 54 |  | simpr |  |-  ( ( ph /\ v e. B ) -> v e. B ) | 
						
							| 55 | 7 | adantr |  |-  ( ( ph /\ v e. B ) -> F : A --> CC ) | 
						
							| 56 |  | eleq1w |  |-  ( x = v -> ( x e. B <-> v e. B ) ) | 
						
							| 57 | 56 | anbi2d |  |-  ( x = v -> ( ( ph /\ x e. B ) <-> ( ph /\ v e. B ) ) ) | 
						
							| 58 |  | oveq1 |  |-  ( x = v -> ( x - T ) = ( v - T ) ) | 
						
							| 59 | 58 | eleq1d |  |-  ( x = v -> ( ( x - T ) e. A <-> ( v - T ) e. A ) ) | 
						
							| 60 | 57 59 | imbi12d |  |-  ( x = v -> ( ( ( ph /\ x e. B ) -> ( x - T ) e. A ) <-> ( ( ph /\ v e. B ) -> ( v - T ) e. A ) ) ) | 
						
							| 61 | 60 25 | chvarvv |  |-  ( ( ph /\ v e. B ) -> ( v - T ) e. A ) | 
						
							| 62 | 55 61 | ffvelcdmd |  |-  ( ( ph /\ v e. B ) -> ( F ` ( v - T ) ) e. CC ) | 
						
							| 63 | 5 53 54 62 | fvmptd3 |  |-  ( ( ph /\ v e. B ) -> ( G ` v ) = ( F ` ( v - T ) ) ) | 
						
							| 64 | 63 | 3adant2 |  |-  ( ( ph /\ x e. B /\ v e. B ) -> ( G ` v ) = ( F ` ( v - T ) ) ) | 
						
							| 65 | 52 64 | oveq12d |  |-  ( ( ph /\ x e. B /\ v e. B ) -> ( ( G ` x ) - ( G ` v ) ) = ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) | 
						
							| 66 | 65 | fveq2d |  |-  ( ( ph /\ x e. B /\ v e. B ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) | 
						
							| 67 | 46 48 49 66 | syl3anc |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) | 
						
							| 68 |  | simpr |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) | 
						
							| 69 | 12 | simpld |  |-  ( ( ph /\ x e. B ) -> x e. CC ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( ph /\ x e. B ) /\ v e. B ) -> x e. CC ) | 
						
							| 71 | 3 | ssrab3 |  |-  B C_ CC | 
						
							| 72 | 71 | sseli |  |-  ( v e. B -> v e. CC ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ( ph /\ x e. B ) /\ v e. B ) -> v e. CC ) | 
						
							| 74 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. B ) /\ v e. B ) -> T e. CC ) | 
						
							| 75 | 70 73 74 | nnncan2d |  |-  ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( ( x - T ) - ( v - T ) ) = ( x - v ) ) | 
						
							| 76 | 75 | fveq2d |  |-  ( ( ( ph /\ x e. B ) /\ v e. B ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) = ( abs ` ( x - v ) ) ) | 
						
							| 78 |  | simpr |  |-  ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( x - v ) ) < z ) | 
						
							| 79 | 77 78 | eqbrtrd |  |-  ( ( ( ( ph /\ x e. B ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) | 
						
							| 80 | 46 48 49 68 79 | syl1111anc |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) | 
						
							| 81 |  | oveq2 |  |-  ( b = ( v - T ) -> ( ( x - T ) - b ) = ( ( x - T ) - ( v - T ) ) ) | 
						
							| 82 | 81 | fveq2d |  |-  ( b = ( v - T ) -> ( abs ` ( ( x - T ) - b ) ) = ( abs ` ( ( x - T ) - ( v - T ) ) ) ) | 
						
							| 83 | 82 | breq1d |  |-  ( b = ( v - T ) -> ( ( abs ` ( ( x - T ) - b ) ) < z <-> ( abs ` ( ( x - T ) - ( v - T ) ) ) < z ) ) | 
						
							| 84 |  | fveq2 |  |-  ( b = ( v - T ) -> ( F ` b ) = ( F ` ( v - T ) ) ) | 
						
							| 85 | 84 | oveq2d |  |-  ( b = ( v - T ) -> ( ( F ` ( x - T ) ) - ( F ` b ) ) = ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) | 
						
							| 86 | 85 | fveq2d |  |-  ( b = ( v - T ) -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) = ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) ) | 
						
							| 87 | 86 | breq1d |  |-  ( b = ( v - T ) -> ( ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w <-> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) | 
						
							| 88 | 83 87 | imbi12d |  |-  ( b = ( v - T ) -> ( ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) <-> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) ) | 
						
							| 89 |  | simpll3 |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) | 
						
							| 90 | 46 49 61 | syl2anc |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( v - T ) e. A ) | 
						
							| 91 | 88 89 90 | rspcdva |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( ( abs ` ( ( x - T ) - ( v - T ) ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) ) | 
						
							| 92 | 80 91 | mpd |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` ( v - T ) ) ) ) < w ) | 
						
							| 93 | 67 92 | eqbrtrd |  |-  ( ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) /\ ( abs ` ( x - v ) ) < z ) -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) | 
						
							| 94 | 93 | ex |  |-  ( ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) /\ v e. B ) -> ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) | 
						
							| 95 | 94 | ralrimiva |  |-  ( ( ( ph /\ ( x e. B /\ w e. RR+ ) ) /\ z e. RR+ /\ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) | 
						
							| 96 | 95 | 3exp |  |-  ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( z e. RR+ -> ( A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) -> A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) ) | 
						
							| 97 | 96 | reximdvai |  |-  ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> ( E. z e. RR+ A. b e. A ( ( abs ` ( ( x - T ) - b ) ) < z -> ( abs ` ( ( F ` ( x - T ) ) - ( F ` b ) ) ) < w ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) | 
						
							| 98 | 44 97 | mpd |  |-  ( ( ph /\ ( x e. B /\ w e. RR+ ) ) -> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) | 
						
							| 99 | 98 | ralrimivva |  |-  ( ph -> A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) | 
						
							| 100 | 71 | a1i |  |-  ( ph -> B C_ CC ) | 
						
							| 101 |  | elcncf |  |-  ( ( B C_ CC /\ CC C_ CC ) -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) ) | 
						
							| 102 | 100 35 101 | sylancl |  |-  ( ph -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) ) | 
						
							| 103 |  | nfcv |  |-  F/_ x RR+ | 
						
							| 104 |  | nfcv |  |-  F/_ x B | 
						
							| 105 |  | nfv |  |-  F/ x ( abs ` ( a - v ) ) < z | 
						
							| 106 |  | nfcv |  |-  F/_ x abs | 
						
							| 107 |  | nfmpt1 |  |-  F/_ x ( x e. B |-> ( F ` ( x - T ) ) ) | 
						
							| 108 | 5 107 | nfcxfr |  |-  F/_ x G | 
						
							| 109 |  | nfcv |  |-  F/_ x a | 
						
							| 110 | 108 109 | nffv |  |-  F/_ x ( G ` a ) | 
						
							| 111 |  | nfcv |  |-  F/_ x - | 
						
							| 112 |  | nfcv |  |-  F/_ x v | 
						
							| 113 | 108 112 | nffv |  |-  F/_ x ( G ` v ) | 
						
							| 114 | 110 111 113 | nfov |  |-  F/_ x ( ( G ` a ) - ( G ` v ) ) | 
						
							| 115 | 106 114 | nffv |  |-  F/_ x ( abs ` ( ( G ` a ) - ( G ` v ) ) ) | 
						
							| 116 |  | nfcv |  |-  F/_ x < | 
						
							| 117 |  | nfcv |  |-  F/_ x w | 
						
							| 118 | 115 116 117 | nfbr |  |-  F/ x ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w | 
						
							| 119 | 105 118 | nfim |  |-  F/ x ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) | 
						
							| 120 | 104 119 | nfralw |  |-  F/ x A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) | 
						
							| 121 | 103 120 | nfrexw |  |-  F/ x E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) | 
						
							| 122 | 103 121 | nfralw |  |-  F/ x A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) | 
						
							| 123 |  | nfv |  |-  F/ a A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) | 
						
							| 124 |  | fvoveq1 |  |-  ( a = x -> ( abs ` ( a - v ) ) = ( abs ` ( x - v ) ) ) | 
						
							| 125 | 124 | breq1d |  |-  ( a = x -> ( ( abs ` ( a - v ) ) < z <-> ( abs ` ( x - v ) ) < z ) ) | 
						
							| 126 | 125 | imbrov2fvoveq |  |-  ( a = x -> ( ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) | 
						
							| 127 | 126 | rexralbidv |  |-  ( a = x -> ( E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) | 
						
							| 128 | 127 | ralbidv |  |-  ( a = x -> ( A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) | 
						
							| 129 | 122 123 128 | cbvralw |  |-  ( A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) <-> A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) | 
						
							| 130 | 129 | bicomi |  |-  ( A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) <-> A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) | 
						
							| 131 | 130 | anbi2i |  |-  ( ( G : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) <-> ( G : B --> CC /\ A. a e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( a - v ) ) < z -> ( abs ` ( ( G ` a ) - ( G ` v ) ) ) < w ) ) ) | 
						
							| 132 | 102 131 | bitr4di |  |-  ( ph -> ( G e. ( B -cn-> CC ) <-> ( G : B --> CC /\ A. x e. B A. w e. RR+ E. z e. RR+ A. v e. B ( ( abs ` ( x - v ) ) < z -> ( abs ` ( ( G ` x ) - ( G ` v ) ) ) < w ) ) ) ) | 
						
							| 133 | 27 99 132 | mpbir2and |  |-  ( ph -> G e. ( B -cn-> CC ) ) |