| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncff |
|- ( f e. ( A -cn-> B ) -> f : A --> B ) |
| 2 |
1
|
adantl |
|- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> f : A --> B ) |
| 3 |
|
simpll |
|- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> B C_ C ) |
| 4 |
2 3
|
fssd |
|- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> f : A --> C ) |
| 5 |
|
cncfcdm |
|- ( ( C C_ CC /\ f e. ( A -cn-> B ) ) -> ( f e. ( A -cn-> C ) <-> f : A --> C ) ) |
| 6 |
5
|
adantll |
|- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> ( f e. ( A -cn-> C ) <-> f : A --> C ) ) |
| 7 |
4 6
|
mpbird |
|- ( ( ( B C_ C /\ C C_ CC ) /\ f e. ( A -cn-> B ) ) -> f e. ( A -cn-> C ) ) |
| 8 |
7
|
ex |
|- ( ( B C_ C /\ C C_ CC ) -> ( f e. ( A -cn-> B ) -> f e. ( A -cn-> C ) ) ) |
| 9 |
8
|
ssrdv |
|- ( ( B C_ C /\ C C_ CC ) -> ( A -cn-> B ) C_ ( A -cn-> C ) ) |