Step |
Hyp |
Ref |
Expression |
1 |
|
cncls2i.1 |
|- Y = U. K |
2 |
|
cntop2 |
|- ( F e. ( J Cn K ) -> K e. Top ) |
3 |
1
|
clscld |
|- ( ( K e. Top /\ S C_ Y ) -> ( ( cls ` K ) ` S ) e. ( Clsd ` K ) ) |
4 |
2 3
|
sylan |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( cls ` K ) ` S ) e. ( Clsd ` K ) ) |
5 |
|
cnclima |
|- ( ( F e. ( J Cn K ) /\ ( ( cls ` K ) ` S ) e. ( Clsd ` K ) ) -> ( `' F " ( ( cls ` K ) ` S ) ) e. ( Clsd ` J ) ) |
6 |
4 5
|
syldan |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( cls ` K ) ` S ) ) e. ( Clsd ` J ) ) |
7 |
1
|
sscls |
|- ( ( K e. Top /\ S C_ Y ) -> S C_ ( ( cls ` K ) ` S ) ) |
8 |
2 7
|
sylan |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> S C_ ( ( cls ` K ) ` S ) ) |
9 |
|
imass2 |
|- ( S C_ ( ( cls ` K ) ` S ) -> ( `' F " S ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |
10 |
8 9
|
syl |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " S ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |
11 |
|
eqid |
|- U. J = U. J |
12 |
11
|
clsss2 |
|- ( ( ( `' F " ( ( cls ` K ) ` S ) ) e. ( Clsd ` J ) /\ ( `' F " S ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) -> ( ( cls ` J ) ` ( `' F " S ) ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |
13 |
6 10 12
|
syl2anc |
|- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( cls ` J ) ` ( `' F " S ) ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |