Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldms |
|- CCfld e. MetSp |
2 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
3 |
2
|
cncmet |
|- ( abs o. - ) e. ( CMet ` CC ) |
4 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
5 |
|
cnmet |
|- ( abs o. - ) e. ( Met ` CC ) |
6 |
|
metf |
|- ( ( abs o. - ) e. ( Met ` CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
7 |
5 6
|
ax-mp |
|- ( abs o. - ) : ( CC X. CC ) --> RR |
8 |
|
ffn |
|- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
9 |
|
fnresdm |
|- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
10 |
7 8 9
|
mp2b |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
11 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
12 |
11
|
reseq1i |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
13 |
10 12
|
eqtr3i |
|- ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
14 |
4 13
|
iscms |
|- ( CCfld e. CMetSp <-> ( CCfld e. MetSp /\ ( abs o. - ) e. ( CMet ` CC ) ) ) |
15 |
1 3 14
|
mpbir2an |
|- CCfld e. CMetSp |