| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zmulcl |
|- ( ( A e. ZZ /\ C e. ZZ ) -> ( A x. C ) e. ZZ ) |
| 2 |
1
|
3adant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A x. C ) e. ZZ ) |
| 3 |
|
zmulcl |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
| 4 |
3
|
3adant1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
| 5 |
|
simpl |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. NN ) |
| 6 |
|
congr |
|- ( ( ( A x. C ) e. ZZ /\ ( B x. C ) e. ZZ /\ N e. NN ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> E. k e. ZZ ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) ) ) |
| 7 |
2 4 5 6
|
syl2an3an |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> E. k e. ZZ ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) ) ) |
| 8 |
|
simpl |
|- ( ( C e. ZZ /\ N e. NN ) -> C e. ZZ ) |
| 9 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 10 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 11 |
9 10
|
jca |
|- ( N e. NN -> ( N e. ZZ /\ N =/= 0 ) ) |
| 12 |
11
|
adantl |
|- ( ( C e. ZZ /\ N e. NN ) -> ( N e. ZZ /\ N =/= 0 ) ) |
| 13 |
|
eqidd |
|- ( ( C e. ZZ /\ N e. NN ) -> ( C gcd N ) = ( C gcd N ) ) |
| 14 |
8 12 13
|
3jca |
|- ( ( C e. ZZ /\ N e. NN ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) |
| 15 |
14
|
ex |
|- ( C e. ZZ -> ( N e. NN -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) ) |
| 16 |
15
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( N e. NN -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) ) |
| 17 |
16
|
com12 |
|- ( N e. NN -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) ) |
| 18 |
17
|
adantr |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) ) |
| 19 |
18
|
impcom |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) |
| 20 |
|
divgcdcoprmex |
|- ( ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) -> E. r e. ZZ E. s e. ZZ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) |
| 21 |
19 20
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> E. r e. ZZ E. s e. ZZ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> E. r e. ZZ E. s e. ZZ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) |
| 23 |
|
oveq2 |
|- ( N = ( ( C gcd N ) x. s ) -> ( k x. N ) = ( k x. ( ( C gcd N ) x. s ) ) ) |
| 24 |
23
|
3ad2ant2 |
|- ( ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( k x. N ) = ( k x. ( ( C gcd N ) x. s ) ) ) |
| 25 |
24
|
adantl |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( k x. N ) = ( k x. ( ( C gcd N ) x. s ) ) ) |
| 26 |
|
oveq2 |
|- ( C = ( ( C gcd N ) x. r ) -> ( A x. C ) = ( A x. ( ( C gcd N ) x. r ) ) ) |
| 27 |
|
oveq2 |
|- ( C = ( ( C gcd N ) x. r ) -> ( B x. C ) = ( B x. ( ( C gcd N ) x. r ) ) ) |
| 28 |
26 27
|
oveq12d |
|- ( C = ( ( C gcd N ) x. r ) -> ( ( A x. C ) - ( B x. C ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) ) |
| 29 |
28
|
3ad2ant1 |
|- ( ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( ( A x. C ) - ( B x. C ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) ) |
| 30 |
29
|
adantl |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( A x. C ) - ( B x. C ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) ) |
| 31 |
25 30
|
eqeq12d |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) <-> ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) ) ) |
| 32 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> k e. ZZ ) |
| 33 |
32
|
zcnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> k e. CC ) |
| 34 |
33
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> k e. CC ) |
| 35 |
|
simp3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. ZZ ) |
| 36 |
35
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> C e. ZZ ) |
| 37 |
9
|
adantr |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. ZZ ) |
| 38 |
37
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. ZZ ) |
| 39 |
36 38
|
gcdcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. NN0 ) |
| 40 |
39
|
nn0cnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. CC ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( C gcd N ) e. CC ) |
| 42 |
|
simpr |
|- ( ( r e. ZZ /\ s e. ZZ ) -> s e. ZZ ) |
| 43 |
42
|
zcnd |
|- ( ( r e. ZZ /\ s e. ZZ ) -> s e. CC ) |
| 44 |
43
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> s e. CC ) |
| 45 |
34 41 44
|
mul12d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( k x. ( ( C gcd N ) x. s ) ) = ( ( C gcd N ) x. ( k x. s ) ) ) |
| 46 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. ZZ ) |
| 47 |
46
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. CC ) |
| 48 |
47
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> A e. CC ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> A e. CC ) |
| 50 |
35
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> C e. ZZ ) |
| 51 |
5
|
nnzd |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. ZZ ) |
| 52 |
51
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. ZZ ) |
| 53 |
52
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> N e. ZZ ) |
| 54 |
50 53
|
gcdcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( C gcd N ) e. NN0 ) |
| 55 |
54
|
nn0cnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( C gcd N ) e. CC ) |
| 56 |
55
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( C gcd N ) e. CC ) |
| 57 |
|
simpl |
|- ( ( r e. ZZ /\ s e. ZZ ) -> r e. ZZ ) |
| 58 |
57
|
zcnd |
|- ( ( r e. ZZ /\ s e. ZZ ) -> r e. CC ) |
| 59 |
58
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> r e. CC ) |
| 60 |
49 56 59
|
mul12d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A x. ( ( C gcd N ) x. r ) ) = ( ( C gcd N ) x. ( A x. r ) ) ) |
| 61 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. ZZ ) |
| 62 |
61
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. CC ) |
| 63 |
62
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> B e. CC ) |
| 64 |
63
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> B e. CC ) |
| 65 |
36 52
|
gcdcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. NN0 ) |
| 66 |
65
|
nn0cnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. CC ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( C gcd N ) e. CC ) |
| 68 |
64 67 59
|
mul12d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B x. ( ( C gcd N ) x. r ) ) = ( ( C gcd N ) x. ( B x. r ) ) ) |
| 69 |
60 68
|
oveq12d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) = ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) ) |
| 70 |
45 69
|
eqeq12d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) <-> ( ( C gcd N ) x. ( k x. s ) ) = ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) ) ) |
| 71 |
46
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> A e. ZZ ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> A e. ZZ ) |
| 73 |
57
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> r e. ZZ ) |
| 74 |
72 73
|
zmulcld |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A x. r ) e. ZZ ) |
| 75 |
74
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A x. r ) e. CC ) |
| 76 |
61
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> B e. ZZ ) |
| 77 |
76
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> B e. ZZ ) |
| 78 |
77 73
|
zmulcld |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B x. r ) e. ZZ ) |
| 79 |
78
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B x. r ) e. CC ) |
| 80 |
67 75 79
|
subdid |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( C gcd N ) x. ( ( A x. r ) - ( B x. r ) ) ) = ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) ) |
| 81 |
80
|
eqcomd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) = ( ( C gcd N ) x. ( ( A x. r ) - ( B x. r ) ) ) ) |
| 82 |
81
|
eqeq2d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( ( C gcd N ) x. ( k x. s ) ) = ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) <-> ( ( C gcd N ) x. ( k x. s ) ) = ( ( C gcd N ) x. ( ( A x. r ) - ( B x. r ) ) ) ) ) |
| 83 |
32
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> k e. ZZ ) |
| 84 |
42
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> s e. ZZ ) |
| 85 |
83 84
|
zmulcld |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( k x. s ) e. ZZ ) |
| 86 |
85
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( k x. s ) e. CC ) |
| 87 |
|
simpl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
| 88 |
87 57
|
anim12i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A e. ZZ /\ r e. ZZ ) ) |
| 89 |
|
zmulcl |
|- ( ( A e. ZZ /\ r e. ZZ ) -> ( A x. r ) e. ZZ ) |
| 90 |
88 89
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A x. r ) e. ZZ ) |
| 91 |
|
simpr |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B e. ZZ ) |
| 92 |
91 57
|
anim12i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B e. ZZ /\ r e. ZZ ) ) |
| 93 |
|
zmulcl |
|- ( ( B e. ZZ /\ r e. ZZ ) -> ( B x. r ) e. ZZ ) |
| 94 |
92 93
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B x. r ) e. ZZ ) |
| 95 |
90 94
|
zsubcld |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. r ) - ( B x. r ) ) e. ZZ ) |
| 96 |
95
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) |
| 97 |
96
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( r e. ZZ /\ s e. ZZ ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) ) |
| 98 |
97
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( r e. ZZ /\ s e. ZZ ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) ) |
| 99 |
98
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( ( r e. ZZ /\ s e. ZZ ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) ) |
| 100 |
99
|
imp |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) |
| 101 |
10
|
adantr |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N =/= 0 ) |
| 102 |
101
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N =/= 0 ) |
| 103 |
|
gcd2n0cl |
|- ( ( C e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( C gcd N ) e. NN ) |
| 104 |
36 52 102 103
|
syl3anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. NN ) |
| 105 |
|
nnne0 |
|- ( ( C gcd N ) e. NN -> ( C gcd N ) =/= 0 ) |
| 106 |
104 105
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) =/= 0 ) |
| 107 |
106
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( C gcd N ) =/= 0 ) |
| 108 |
86 100 67 107
|
mulcand |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( ( C gcd N ) x. ( k x. s ) ) = ( ( C gcd N ) x. ( ( A x. r ) - ( B x. r ) ) ) <-> ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) ) ) |
| 109 |
70 82 108
|
3bitrd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) <-> ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) ) ) |
| 110 |
109
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) <-> ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) ) ) |
| 111 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 112 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
| 113 |
111 112
|
anim12i |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 114 |
113
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 115 |
114
|
ad2antrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 116 |
115 58
|
anim12i |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A e. CC /\ B e. CC ) /\ r e. CC ) ) |
| 117 |
|
df-3an |
|- ( ( A e. CC /\ B e. CC /\ r e. CC ) <-> ( ( A e. CC /\ B e. CC ) /\ r e. CC ) ) |
| 118 |
116 117
|
sylibr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A e. CC /\ B e. CC /\ r e. CC ) ) |
| 119 |
|
subdir |
|- ( ( A e. CC /\ B e. CC /\ r e. CC ) -> ( ( A - B ) x. r ) = ( ( A x. r ) - ( B x. r ) ) ) |
| 120 |
118 119
|
syl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A - B ) x. r ) = ( ( A x. r ) - ( B x. r ) ) ) |
| 121 |
120
|
eqcomd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. r ) - ( B x. r ) ) = ( ( A - B ) x. r ) ) |
| 122 |
121
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( A x. r ) - ( B x. r ) ) = ( ( A - B ) x. r ) ) |
| 123 |
122
|
eqeq2d |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) <-> ( k x. s ) = ( ( A - B ) x. r ) ) ) |
| 124 |
5
|
nncnd |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. CC ) |
| 125 |
124
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. CC ) |
| 126 |
125
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> N e. CC ) |
| 127 |
84
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> s e. CC ) |
| 128 |
66 106
|
jca |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( C gcd N ) e. CC /\ ( C gcd N ) =/= 0 ) ) |
| 129 |
128
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( C gcd N ) e. CC /\ ( C gcd N ) =/= 0 ) ) |
| 130 |
|
divmul2 |
|- ( ( N e. CC /\ s e. CC /\ ( ( C gcd N ) e. CC /\ ( C gcd N ) =/= 0 ) ) -> ( ( N / ( C gcd N ) ) = s <-> N = ( ( C gcd N ) x. s ) ) ) |
| 131 |
126 127 129 130
|
syl3anc |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( N / ( C gcd N ) ) = s <-> N = ( ( C gcd N ) x. s ) ) ) |
| 132 |
|
simpll |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) ) |
| 133 |
73
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> r e. ZZ ) |
| 134 |
5
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. NN ) |
| 135 |
134 36
|
jca |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( N e. NN /\ C e. ZZ ) ) |
| 136 |
|
divgcdnnr |
|- ( ( N e. NN /\ C e. ZZ ) -> ( N / ( C gcd N ) ) e. NN ) |
| 137 |
135 136
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( N / ( C gcd N ) ) e. NN ) |
| 138 |
137
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( N / ( C gcd N ) ) e. NN ) |
| 139 |
138
|
ad2antrr |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( N / ( C gcd N ) ) e. NN ) |
| 140 |
|
eleq1 |
|- ( s = ( N / ( C gcd N ) ) -> ( s e. NN <-> ( N / ( C gcd N ) ) e. NN ) ) |
| 141 |
140
|
eqcoms |
|- ( ( N / ( C gcd N ) ) = s -> ( s e. NN <-> ( N / ( C gcd N ) ) e. NN ) ) |
| 142 |
141
|
adantl |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( s e. NN <-> ( N / ( C gcd N ) ) e. NN ) ) |
| 143 |
139 142
|
mpbird |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> s e. NN ) |
| 144 |
133 143
|
jca |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( r e. ZZ /\ s e. NN ) ) |
| 145 |
132 144
|
jca |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) ) |
| 146 |
|
simpr |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( N / ( C gcd N ) ) = s ) |
| 147 |
145 146
|
jca |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) ) |
| 148 |
|
nnz |
|- ( s e. NN -> s e. ZZ ) |
| 149 |
148
|
adantl |
|- ( ( r e. ZZ /\ s e. NN ) -> s e. ZZ ) |
| 150 |
149
|
anim2i |
|- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( k e. ZZ /\ s e. ZZ ) ) |
| 151 |
150
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( k e. ZZ /\ s e. ZZ ) ) |
| 152 |
|
dvdsmul2 |
|- ( ( k e. ZZ /\ s e. ZZ ) -> s || ( k x. s ) ) |
| 153 |
151 152
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> s || ( k x. s ) ) |
| 154 |
|
breq2 |
|- ( ( k x. s ) = ( ( A - B ) x. r ) -> ( s || ( k x. s ) <-> s || ( ( A - B ) x. r ) ) ) |
| 155 |
|
zsubcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
| 156 |
155
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. CC ) |
| 157 |
156
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( A - B ) e. CC ) |
| 158 |
|
zcn |
|- ( r e. ZZ -> r e. CC ) |
| 159 |
158
|
adantr |
|- ( ( r e. ZZ /\ s e. NN ) -> r e. CC ) |
| 160 |
159
|
adantl |
|- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> r e. CC ) |
| 161 |
160
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> r e. CC ) |
| 162 |
157 161
|
mulcomd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( A - B ) x. r ) = ( r x. ( A - B ) ) ) |
| 163 |
162
|
breq2d |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s || ( ( A - B ) x. r ) <-> s || ( r x. ( A - B ) ) ) ) |
| 164 |
148
|
anim2i |
|- ( ( r e. ZZ /\ s e. NN ) -> ( r e. ZZ /\ s e. ZZ ) ) |
| 165 |
|
gcdcom |
|- ( ( r e. ZZ /\ s e. ZZ ) -> ( r gcd s ) = ( s gcd r ) ) |
| 166 |
164 165
|
syl |
|- ( ( r e. ZZ /\ s e. NN ) -> ( r gcd s ) = ( s gcd r ) ) |
| 167 |
166
|
eqeq1d |
|- ( ( r e. ZZ /\ s e. NN ) -> ( ( r gcd s ) = 1 <-> ( s gcd r ) = 1 ) ) |
| 168 |
167
|
adantl |
|- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 <-> ( s gcd r ) = 1 ) ) |
| 169 |
168
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( r gcd s ) = 1 <-> ( s gcd r ) = 1 ) ) |
| 170 |
164
|
adantl |
|- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( r e. ZZ /\ s e. ZZ ) ) |
| 171 |
170
|
ancomd |
|- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( s e. ZZ /\ r e. ZZ ) ) |
| 172 |
155 171
|
anim12i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( A - B ) e. ZZ /\ ( s e. ZZ /\ r e. ZZ ) ) ) |
| 173 |
172
|
ancomd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( s e. ZZ /\ r e. ZZ ) /\ ( A - B ) e. ZZ ) ) |
| 174 |
|
df-3an |
|- ( ( s e. ZZ /\ r e. ZZ /\ ( A - B ) e. ZZ ) <-> ( ( s e. ZZ /\ r e. ZZ ) /\ ( A - B ) e. ZZ ) ) |
| 175 |
173 174
|
sylibr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s e. ZZ /\ r e. ZZ /\ ( A - B ) e. ZZ ) ) |
| 176 |
|
coprmdvds |
|- ( ( s e. ZZ /\ r e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( s || ( r x. ( A - B ) ) /\ ( s gcd r ) = 1 ) -> s || ( A - B ) ) ) |
| 177 |
175 176
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( s || ( r x. ( A - B ) ) /\ ( s gcd r ) = 1 ) -> s || ( A - B ) ) ) |
| 178 |
|
simpr |
|- ( ( r e. ZZ /\ s e. NN ) -> s e. NN ) |
| 179 |
178
|
adantl |
|- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> s e. NN ) |
| 180 |
179
|
anim2i |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ s e. NN ) ) |
| 181 |
180
|
ancomd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
| 182 |
|
3anass |
|- ( ( s e. NN /\ A e. ZZ /\ B e. ZZ ) <-> ( s e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
| 183 |
181 182
|
sylibr |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s e. NN /\ A e. ZZ /\ B e. ZZ ) ) |
| 184 |
|
moddvds |
|- ( ( s e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod s ) = ( B mod s ) <-> s || ( A - B ) ) ) |
| 185 |
183 184
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( A mod s ) = ( B mod s ) <-> s || ( A - B ) ) ) |
| 186 |
177 185
|
sylibrd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( s || ( r x. ( A - B ) ) /\ ( s gcd r ) = 1 ) -> ( A mod s ) = ( B mod s ) ) ) |
| 187 |
186
|
expcomd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( s gcd r ) = 1 -> ( s || ( r x. ( A - B ) ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 188 |
169 187
|
sylbid |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( r gcd s ) = 1 -> ( s || ( r x. ( A - B ) ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 189 |
188
|
com23 |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s || ( r x. ( A - B ) ) -> ( ( r gcd s ) = 1 -> ( A mod s ) = ( B mod s ) ) ) ) |
| 190 |
163 189
|
sylbid |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s || ( ( A - B ) x. r ) -> ( ( r gcd s ) = 1 -> ( A mod s ) = ( B mod s ) ) ) ) |
| 191 |
190
|
com3l |
|- ( s || ( ( A - B ) x. r ) -> ( ( r gcd s ) = 1 -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 192 |
154 191
|
biimtrdi |
|- ( ( k x. s ) = ( ( A - B ) x. r ) -> ( s || ( k x. s ) -> ( ( r gcd s ) = 1 -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 193 |
192
|
com14 |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s || ( k x. s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 194 |
153 193
|
mpd |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 195 |
194
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 196 |
195
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 197 |
196
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 198 |
197
|
impl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 199 |
198
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 200 |
199
|
imp |
|- ( ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) /\ ( r gcd s ) = 1 ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) |
| 201 |
|
eqtr2 |
|- ( ( ( N / ( C gcd N ) ) = M /\ ( N / ( C gcd N ) ) = s ) -> M = s ) |
| 202 |
|
oveq2 |
|- ( M = s -> ( A mod M ) = ( A mod s ) ) |
| 203 |
|
oveq2 |
|- ( M = s -> ( B mod M ) = ( B mod s ) ) |
| 204 |
202 203
|
eqeq12d |
|- ( M = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) |
| 205 |
201 204
|
syl |
|- ( ( ( N / ( C gcd N ) ) = M /\ ( N / ( C gcd N ) ) = s ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) |
| 206 |
205
|
ex |
|- ( ( N / ( C gcd N ) ) = M -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 207 |
206
|
eqcoms |
|- ( M = ( N / ( C gcd N ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 208 |
207
|
adantl |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 209 |
208
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 210 |
209
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 211 |
210
|
imp |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) |
| 212 |
211
|
adantr |
|- ( ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) /\ ( r gcd s ) = 1 ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) |
| 213 |
200 212
|
sylibrd |
|- ( ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) /\ ( r gcd s ) = 1 ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) |
| 214 |
213
|
ex |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 215 |
147 214
|
syl |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 216 |
215
|
ex |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) ) |
| 217 |
131 216
|
sylbird |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( N = ( ( C gcd N ) x. s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) ) |
| 218 |
217
|
com3l |
|- ( N = ( ( C gcd N ) x. s ) -> ( ( r gcd s ) = 1 -> ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) ) |
| 219 |
218
|
a1i |
|- ( C = ( ( C gcd N ) x. r ) -> ( N = ( ( C gcd N ) x. s ) -> ( ( r gcd s ) = 1 -> ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) ) ) |
| 220 |
219
|
3imp |
|- ( ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 221 |
220
|
impcom |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) |
| 222 |
123 221
|
sylbid |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 223 |
110 222
|
sylbid |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 224 |
31 223
|
sylbid |
|- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 225 |
224
|
ex |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 226 |
225
|
rexlimdvva |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( E. r e. ZZ E. s e. ZZ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 227 |
22 226
|
mpd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 228 |
227
|
rexlimdva |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( E. k e. ZZ ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 229 |
7 228
|
sylbid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) -> ( A mod M ) = ( B mod M ) ) ) |