| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 2 |
1
|
mul01d |
|- ( A e. ZZ -> ( A x. 0 ) = 0 ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A x. 0 ) = 0 ) |
| 4 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
| 5 |
4
|
mul01d |
|- ( B e. ZZ -> ( B x. 0 ) = 0 ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B x. 0 ) = 0 ) |
| 7 |
3 6
|
eqtr4d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A x. 0 ) = ( B x. 0 ) ) |
| 8 |
7
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( A x. 0 ) = ( B x. 0 ) ) |
| 9 |
8
|
oveq1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A x. 0 ) mod N ) = ( ( B x. 0 ) mod N ) ) |
| 10 |
9
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( ( A x. 0 ) mod N ) = ( ( B x. 0 ) mod N ) ) |
| 11 |
|
oveq2 |
|- ( C = 0 -> ( A x. C ) = ( A x. 0 ) ) |
| 12 |
11
|
oveq1d |
|- ( C = 0 -> ( ( A x. C ) mod N ) = ( ( A x. 0 ) mod N ) ) |
| 13 |
|
oveq2 |
|- ( C = 0 -> ( B x. C ) = ( B x. 0 ) ) |
| 14 |
13
|
oveq1d |
|- ( C = 0 -> ( ( B x. C ) mod N ) = ( ( B x. 0 ) mod N ) ) |
| 15 |
12 14
|
eqeq12d |
|- ( C = 0 -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( ( A x. 0 ) mod N ) = ( ( B x. 0 ) mod N ) ) ) |
| 16 |
10 15
|
imbitrrid |
|- ( C = 0 -> ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| 17 |
|
oveq2 |
|- ( M = ( N / ( C gcd N ) ) -> ( A mod M ) = ( A mod ( N / ( C gcd N ) ) ) ) |
| 18 |
|
oveq2 |
|- ( M = ( N / ( C gcd N ) ) -> ( B mod M ) = ( B mod ( N / ( C gcd N ) ) ) ) |
| 19 |
17 18
|
eqeq12d |
|- ( M = ( N / ( C gcd N ) ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) ) ) |
| 20 |
19
|
adantl |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) ) ) |
| 21 |
20
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) ) ) |
| 22 |
|
simpl |
|- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. NN ) |
| 23 |
|
simp3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. ZZ ) |
| 24 |
|
divgcdnnr |
|- ( ( N e. NN /\ C e. ZZ ) -> ( N / ( C gcd N ) ) e. NN ) |
| 25 |
22 23 24
|
syl2anr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( N / ( C gcd N ) ) e. NN ) |
| 26 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> A e. ZZ ) |
| 27 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> B e. ZZ ) |
| 28 |
|
moddvds |
|- ( ( ( N / ( C gcd N ) ) e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) <-> ( N / ( C gcd N ) ) || ( A - B ) ) ) |
| 29 |
25 26 27 28
|
syl3anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) <-> ( N / ( C gcd N ) ) || ( A - B ) ) ) |
| 30 |
25
|
nnzd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( N / ( C gcd N ) ) e. ZZ ) |
| 31 |
|
zsubcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
| 32 |
31
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A - B ) e. ZZ ) |
| 33 |
32
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( A - B ) e. ZZ ) |
| 34 |
30 33
|
jca |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( N / ( C gcd N ) ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
| 35 |
|
divides |
|- ( ( ( N / ( C gcd N ) ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( N / ( C gcd N ) ) || ( A - B ) <-> E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) ) ) |
| 36 |
34 35
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( N / ( C gcd N ) ) || ( A - B ) <-> E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) ) ) |
| 37 |
21 29 36
|
3bitrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) <-> E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) ) ) |
| 38 |
|
simpr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> k e. ZZ ) |
| 39 |
30
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( N / ( C gcd N ) ) e. ZZ ) |
| 40 |
39
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( N / ( C gcd N ) ) e. ZZ ) |
| 41 |
38 40
|
zmulcld |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( k x. ( N / ( C gcd N ) ) ) e. ZZ ) |
| 42 |
41
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( k x. ( N / ( C gcd N ) ) ) e. CC ) |
| 43 |
31
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. CC ) |
| 44 |
43
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A - B ) e. CC ) |
| 45 |
44
|
ad3antrrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( A - B ) e. CC ) |
| 46 |
23
|
zcnd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. CC ) |
| 47 |
46
|
ad3antrrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> C e. CC ) |
| 48 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> C =/= 0 ) |
| 49 |
48
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> C =/= 0 ) |
| 50 |
42 45 47 49
|
mulcan2d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A - B ) x. C ) <-> ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) ) ) |
| 51 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
| 52 |
|
subdir |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) |
| 53 |
1 4 51 52
|
syl3an |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) |
| 54 |
53
|
ad3antrrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) |
| 55 |
54
|
eqeq2d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A - B ) x. C ) <-> ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) ) |
| 56 |
50 55
|
bitr3d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) <-> ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) ) |
| 57 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 58 |
57
|
adantr |
|- ( ( N e. NN /\ k e. ZZ ) -> N e. ZZ ) |
| 59 |
|
simpr |
|- ( ( N e. NN /\ k e. ZZ ) -> k e. ZZ ) |
| 60 |
59
|
zcnd |
|- ( ( N e. NN /\ k e. ZZ ) -> k e. CC ) |
| 61 |
60
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> k e. CC ) |
| 62 |
46
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> C e. CC ) |
| 63 |
|
simpl |
|- ( ( N e. NN /\ k e. ZZ ) -> N e. NN ) |
| 64 |
63
|
nnzd |
|- ( ( N e. NN /\ k e. ZZ ) -> N e. ZZ ) |
| 65 |
23 64
|
anim12i |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C e. ZZ /\ N e. ZZ ) ) |
| 66 |
|
gcdcl |
|- ( ( C e. ZZ /\ N e. ZZ ) -> ( C gcd N ) e. NN0 ) |
| 67 |
65 66
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C gcd N ) e. NN0 ) |
| 68 |
67
|
nn0cnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C gcd N ) e. CC ) |
| 69 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 70 |
69
|
neneqd |
|- ( N e. NN -> -. N = 0 ) |
| 71 |
70
|
adantr |
|- ( ( N e. NN /\ k e. ZZ ) -> -. N = 0 ) |
| 72 |
71
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> -. N = 0 ) |
| 73 |
72
|
intnand |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> -. ( C = 0 /\ N = 0 ) ) |
| 74 |
|
gcdeq0 |
|- ( ( C e. ZZ /\ N e. ZZ ) -> ( ( C gcd N ) = 0 <-> ( C = 0 /\ N = 0 ) ) ) |
| 75 |
65 74
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( C gcd N ) = 0 <-> ( C = 0 /\ N = 0 ) ) ) |
| 76 |
75
|
necon3abid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( C gcd N ) =/= 0 <-> -. ( C = 0 /\ N = 0 ) ) ) |
| 77 |
73 76
|
mpbird |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C gcd N ) =/= 0 ) |
| 78 |
61 62 68 77
|
divassd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( k x. C ) / ( C gcd N ) ) = ( k x. ( C / ( C gcd N ) ) ) ) |
| 79 |
59
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> k e. ZZ ) |
| 80 |
57 69
|
jca |
|- ( N e. NN -> ( N e. ZZ /\ N =/= 0 ) ) |
| 81 |
80
|
adantr |
|- ( ( N e. NN /\ k e. ZZ ) -> ( N e. ZZ /\ N =/= 0 ) ) |
| 82 |
23 81
|
anim12i |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) ) ) |
| 83 |
|
3anass |
|- ( ( C e. ZZ /\ N e. ZZ /\ N =/= 0 ) <-> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) ) ) |
| 84 |
82 83
|
sylibr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C e. ZZ /\ N e. ZZ /\ N =/= 0 ) ) |
| 85 |
|
divgcdz |
|- ( ( C e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( C / ( C gcd N ) ) e. ZZ ) |
| 86 |
84 85
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C / ( C gcd N ) ) e. ZZ ) |
| 87 |
79 86
|
zmulcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( k x. ( C / ( C gcd N ) ) ) e. ZZ ) |
| 88 |
78 87
|
eqeltrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( k x. C ) / ( C gcd N ) ) e. ZZ ) |
| 89 |
|
dvdsmul1 |
|- ( ( N e. ZZ /\ ( ( k x. C ) / ( C gcd N ) ) e. ZZ ) -> N || ( N x. ( ( k x. C ) / ( C gcd N ) ) ) ) |
| 90 |
58 88 89
|
syl2an2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> N || ( N x. ( ( k x. C ) / ( C gcd N ) ) ) ) |
| 91 |
63
|
nncnd |
|- ( ( N e. NN /\ k e. ZZ ) -> N e. CC ) |
| 92 |
91
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> N e. CC ) |
| 93 |
|
divmulasscom |
|- ( ( ( k e. CC /\ N e. CC /\ C e. CC ) /\ ( ( C gcd N ) e. CC /\ ( C gcd N ) =/= 0 ) ) -> ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( N x. ( ( k x. C ) / ( C gcd N ) ) ) ) |
| 94 |
61 92 62 68 77 93
|
syl32anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( N x. ( ( k x. C ) / ( C gcd N ) ) ) ) |
| 95 |
90 94
|
breqtrrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) |
| 96 |
95
|
exp32 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( N e. NN -> ( k e. ZZ -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) ) ) |
| 97 |
96
|
adantrd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> ( k e. ZZ -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) ) ) |
| 98 |
97
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( k e. ZZ -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) ) |
| 99 |
98
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( k e. ZZ -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) ) |
| 100 |
99
|
imp |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) |
| 101 |
|
breq2 |
|- ( ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A x. C ) - ( B x. C ) ) -> ( N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) <-> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 102 |
100 101
|
syl5ibcom |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A x. C ) - ( B x. C ) ) -> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 103 |
56 102
|
sylbid |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 104 |
103
|
rexlimdva |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 105 |
22
|
adantl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. NN ) |
| 106 |
|
zmulcl |
|- ( ( A e. ZZ /\ C e. ZZ ) -> ( A x. C ) e. ZZ ) |
| 107 |
106
|
3adant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A x. C ) e. ZZ ) |
| 108 |
107
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( A x. C ) e. ZZ ) |
| 109 |
|
zmulcl |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
| 110 |
109
|
3adant1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
| 111 |
110
|
adantr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( B x. C ) e. ZZ ) |
| 112 |
|
moddvds |
|- ( ( N e. NN /\ ( A x. C ) e. ZZ /\ ( B x. C ) e. ZZ ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 113 |
105 108 111 112
|
syl3anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 114 |
113
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 115 |
104 114
|
sylibrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| 116 |
115
|
ex |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C =/= 0 -> ( E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) ) |
| 117 |
116
|
com23 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> ( C =/= 0 -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) ) |
| 118 |
37 117
|
sylbid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) -> ( C =/= 0 -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) ) |
| 119 |
118
|
imp |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( C =/= 0 -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| 120 |
119
|
com12 |
|- ( C =/= 0 -> ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| 121 |
16 120
|
pm2.61ine |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) |
| 122 |
121
|
ex |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |