Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N e. NN /\ ( C gcd N ) = 1 ) -> N e. NN ) |
2 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
3 |
2
|
div1d |
|- ( N e. NN -> ( N / 1 ) = N ) |
4 |
|
oveq2 |
|- ( ( C gcd N ) = 1 -> ( N / ( C gcd N ) ) = ( N / 1 ) ) |
5 |
4
|
eqcomd |
|- ( ( C gcd N ) = 1 -> ( N / 1 ) = ( N / ( C gcd N ) ) ) |
6 |
3 5
|
sylan9req |
|- ( ( N e. NN /\ ( C gcd N ) = 1 ) -> N = ( N / ( C gcd N ) ) ) |
7 |
1 6
|
jca |
|- ( ( N e. NN /\ ( C gcd N ) = 1 ) -> ( N e. NN /\ N = ( N / ( C gcd N ) ) ) ) |
8 |
|
cncongr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ N = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |
9 |
7 8
|
sylan2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ ( C gcd N ) = 1 ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |