Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
2 |
1
|
ad2antrl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> P e. NN ) |
3 |
|
coprm |
|- ( ( P e. Prime /\ C e. ZZ ) -> ( -. P || C <-> ( P gcd C ) = 1 ) ) |
4 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
5 |
|
gcdcom |
|- ( ( P e. ZZ /\ C e. ZZ ) -> ( P gcd C ) = ( C gcd P ) ) |
6 |
4 5
|
sylan |
|- ( ( P e. Prime /\ C e. ZZ ) -> ( P gcd C ) = ( C gcd P ) ) |
7 |
6
|
eqeq1d |
|- ( ( P e. Prime /\ C e. ZZ ) -> ( ( P gcd C ) = 1 <-> ( C gcd P ) = 1 ) ) |
8 |
3 7
|
bitrd |
|- ( ( P e. Prime /\ C e. ZZ ) -> ( -. P || C <-> ( C gcd P ) = 1 ) ) |
9 |
8
|
ancoms |
|- ( ( C e. ZZ /\ P e. Prime ) -> ( -. P || C <-> ( C gcd P ) = 1 ) ) |
10 |
9
|
biimpd |
|- ( ( C e. ZZ /\ P e. Prime ) -> ( -. P || C -> ( C gcd P ) = 1 ) ) |
11 |
10
|
expimpd |
|- ( C e. ZZ -> ( ( P e. Prime /\ -. P || C ) -> ( C gcd P ) = 1 ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( P e. Prime /\ -. P || C ) -> ( C gcd P ) = 1 ) ) |
13 |
12
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> ( C gcd P ) = 1 ) |
14 |
2 13
|
jca |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> ( P e. NN /\ ( C gcd P ) = 1 ) ) |
15 |
|
cncongrcoprm |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. NN /\ ( C gcd P ) = 1 ) ) -> ( ( ( A x. C ) mod P ) = ( ( B x. C ) mod P ) <-> ( A mod P ) = ( B mod P ) ) ) |
16 |
14 15
|
syldan |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( P e. Prime /\ -. P || C ) ) -> ( ( ( A x. C ) mod P ) = ( ( B x. C ) mod P ) <-> ( A mod P ) = ( B mod P ) ) ) |