Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
2 |
1
|
a1i |
|- ( T. -> CC = ( Base ` CCfld ) ) |
3 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
4 |
3
|
a1i |
|- ( T. -> + = ( +g ` CCfld ) ) |
5 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
6 |
5
|
a1i |
|- ( T. -> x. = ( .r ` CCfld ) ) |
7 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
8 |
|
addass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
9 |
|
0cn |
|- 0 e. CC |
10 |
|
addid2 |
|- ( x e. CC -> ( 0 + x ) = x ) |
11 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
12 |
|
addcom |
|- ( ( -u x e. CC /\ x e. CC ) -> ( -u x + x ) = ( x + -u x ) ) |
13 |
11 12
|
mpancom |
|- ( x e. CC -> ( -u x + x ) = ( x + -u x ) ) |
14 |
|
negid |
|- ( x e. CC -> ( x + -u x ) = 0 ) |
15 |
13 14
|
eqtrd |
|- ( x e. CC -> ( -u x + x ) = 0 ) |
16 |
1 3 7 8 9 10 11 15
|
isgrpi |
|- CCfld e. Grp |
17 |
16
|
a1i |
|- ( T. -> CCfld e. Grp ) |
18 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
19 |
18
|
3adant1 |
|- ( ( T. /\ x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
20 |
|
mulass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
21 |
20
|
adantl |
|- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
22 |
|
adddi |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
23 |
22
|
adantl |
|- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
24 |
|
adddir |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
25 |
24
|
adantl |
|- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
26 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
27 |
|
mulid2 |
|- ( x e. CC -> ( 1 x. x ) = x ) |
28 |
27
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( 1 x. x ) = x ) |
29 |
|
mulid1 |
|- ( x e. CC -> ( x x. 1 ) = x ) |
30 |
29
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( x x. 1 ) = x ) |
31 |
|
mulcom |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
32 |
31
|
3adant1 |
|- ( ( T. /\ x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
33 |
2 4 6 17 19 21 23 25 26 28 30 32
|
iscrngd |
|- ( T. -> CCfld e. CRing ) |
34 |
33
|
mptru |
|- CCfld e. CRing |