| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnaddabloOLD |  |-  + e. AbelOp | 
						
							| 2 |  | ax-addf |  |-  + : ( CC X. CC ) --> CC | 
						
							| 3 | 2 | fdmi |  |-  dom + = ( CC X. CC ) | 
						
							| 4 |  | ax-mulf |  |-  x. : ( CC X. CC ) --> CC | 
						
							| 5 |  | mullid |  |-  ( x e. CC -> ( 1 x. x ) = x ) | 
						
							| 6 |  | adddi |  |-  ( ( y e. CC /\ x e. CC /\ z e. CC ) -> ( y x. ( x + z ) ) = ( ( y x. x ) + ( y x. z ) ) ) | 
						
							| 7 |  | adddir |  |-  ( ( y e. CC /\ z e. CC /\ x e. CC ) -> ( ( y + z ) x. x ) = ( ( y x. x ) + ( z x. x ) ) ) | 
						
							| 8 |  | mulass |  |-  ( ( y e. CC /\ z e. CC /\ x e. CC ) -> ( ( y x. z ) x. x ) = ( y x. ( z x. x ) ) ) | 
						
							| 9 |  | eqid |  |-  <. + , x. >. = <. + , x. >. | 
						
							| 10 | 1 3 4 5 6 7 8 9 | isvciOLD |  |-  <. + , x. >. e. CVecOLD |