Step |
Hyp |
Ref |
Expression |
1 |
|
cnaddabloOLD |
|- + e. AbelOp |
2 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
3 |
2
|
fdmi |
|- dom + = ( CC X. CC ) |
4 |
|
ax-mulf |
|- x. : ( CC X. CC ) --> CC |
5 |
|
mulid2 |
|- ( x e. CC -> ( 1 x. x ) = x ) |
6 |
|
adddi |
|- ( ( y e. CC /\ x e. CC /\ z e. CC ) -> ( y x. ( x + z ) ) = ( ( y x. x ) + ( y x. z ) ) ) |
7 |
|
adddir |
|- ( ( y e. CC /\ z e. CC /\ x e. CC ) -> ( ( y + z ) x. x ) = ( ( y x. x ) + ( z x. x ) ) ) |
8 |
|
mulass |
|- ( ( y e. CC /\ z e. CC /\ x e. CC ) -> ( ( y x. z ) x. x ) = ( y x. ( z x. x ) ) ) |
9 |
|
eqid |
|- <. + , x. >. = <. + , x. >. |
10 |
1 3 4 5 6 7 8 9
|
isvciOLD |
|- <. + , x. >. e. CVecOLD |