Step |
Hyp |
Ref |
Expression |
1 |
|
cnrlmod.c |
|- C = ( ringLMod ` CCfld ) |
2 |
1
|
cnrlmod |
|- C e. LMod |
3 |
|
cnfldex |
|- CCfld e. _V |
4 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
5 |
4
|
ressid |
|- ( CCfld e. _V -> ( CCfld |`s CC ) = CCfld ) |
6 |
3 5
|
ax-mp |
|- ( CCfld |`s CC ) = CCfld |
7 |
6
|
eqcomi |
|- CCfld = ( CCfld |`s CC ) |
8 |
|
id |
|- ( x e. CC -> x e. CC ) |
9 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
10 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
11 |
|
ax-1cn |
|- 1 e. CC |
12 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
13 |
8 9 10 11 12
|
cnsubrglem |
|- CC e. ( SubRing ` CCfld ) |
14 |
|
rlmsca |
|- ( CCfld e. _V -> CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) ) |
15 |
3 14
|
ax-mp |
|- CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) |
16 |
1
|
eqcomi |
|- ( ringLMod ` CCfld ) = C |
17 |
16
|
fveq2i |
|- ( Scalar ` ( ringLMod ` CCfld ) ) = ( Scalar ` C ) |
18 |
15 17
|
eqtri |
|- CCfld = ( Scalar ` C ) |
19 |
18
|
isclmi |
|- ( ( C e. LMod /\ CCfld = ( CCfld |`s CC ) /\ CC e. ( SubRing ` CCfld ) ) -> C e. CMod ) |
20 |
2 7 13 19
|
mp3an |
|- C e. CMod |
21 |
1
|
cnrlvec |
|- C e. LVec |
22 |
20 21
|
elini |
|- C e. ( CMod i^i LVec ) |
23 |
|
df-cvs |
|- CVec = ( CMod i^i LVec ) |
24 |
22 23
|
eleqtrri |
|- C e. CVec |