| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnrlmod.c |  |-  C = ( ringLMod ` CCfld ) | 
						
							| 2 | 1 | cnrlmod |  |-  C e. LMod | 
						
							| 3 |  | cnfldex |  |-  CCfld e. _V | 
						
							| 4 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 5 | 4 | ressid |  |-  ( CCfld e. _V -> ( CCfld |`s CC ) = CCfld ) | 
						
							| 6 | 3 5 | ax-mp |  |-  ( CCfld |`s CC ) = CCfld | 
						
							| 7 | 6 | eqcomi |  |-  CCfld = ( CCfld |`s CC ) | 
						
							| 8 |  | id |  |-  ( x e. CC -> x e. CC ) | 
						
							| 9 |  | addcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) | 
						
							| 10 |  | negcl |  |-  ( x e. CC -> -u x e. CC ) | 
						
							| 11 |  | ax-1cn |  |-  1 e. CC | 
						
							| 12 |  | mulcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 13 | 8 9 10 11 12 | cnsubrglem |  |-  CC e. ( SubRing ` CCfld ) | 
						
							| 14 |  | rlmsca |  |-  ( CCfld e. _V -> CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) ) | 
						
							| 15 | 3 14 | ax-mp |  |-  CCfld = ( Scalar ` ( ringLMod ` CCfld ) ) | 
						
							| 16 | 1 | eqcomi |  |-  ( ringLMod ` CCfld ) = C | 
						
							| 17 | 16 | fveq2i |  |-  ( Scalar ` ( ringLMod ` CCfld ) ) = ( Scalar ` C ) | 
						
							| 18 | 15 17 | eqtri |  |-  CCfld = ( Scalar ` C ) | 
						
							| 19 | 18 | isclmi |  |-  ( ( C e. LMod /\ CCfld = ( CCfld |`s CC ) /\ CC e. ( SubRing ` CCfld ) ) -> C e. CMod ) | 
						
							| 20 | 2 7 13 19 | mp3an |  |-  C e. CMod | 
						
							| 21 | 1 | cnrlvec |  |-  C e. LVec | 
						
							| 22 | 20 21 | elini |  |-  C e. ( CMod i^i LVec ) | 
						
							| 23 |  | df-cvs |  |-  CVec = ( CMod i^i LVec ) | 
						
							| 24 | 22 23 | eleqtrri |  |-  C e. CVec |