Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
2 |
1
|
a1i |
|- ( T. -> CC = ( Base ` CCfld ) ) |
3 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
4 |
3
|
a1i |
|- ( T. -> x. = ( .r ` CCfld ) ) |
5 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
6 |
5
|
a1i |
|- ( T. -> 0 = ( 0g ` CCfld ) ) |
7 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
8 |
7
|
a1i |
|- ( T. -> 1 = ( 1r ` CCfld ) ) |
9 |
|
cnring |
|- CCfld e. Ring |
10 |
9
|
a1i |
|- ( T. -> CCfld e. Ring ) |
11 |
|
mulne0 |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
12 |
11
|
3adant1 |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
13 |
|
ax-1ne0 |
|- 1 =/= 0 |
14 |
13
|
a1i |
|- ( T. -> 1 =/= 0 ) |
15 |
|
reccl |
|- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) |
16 |
15
|
adantl |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
17 |
|
recne0 |
|- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) =/= 0 ) |
18 |
17
|
adantl |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) =/= 0 ) |
19 |
|
recid2 |
|- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) x. x ) = 1 ) |
20 |
19
|
adantl |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( 1 / x ) x. x ) = 1 ) |
21 |
2 4 6 8 10 12 14 16 18 20
|
isdrngd |
|- ( T. -> CCfld e. DivRing ) |
22 |
21
|
mptru |
|- CCfld e. DivRing |