Metamath Proof Explorer


Theorem cndrng

Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion cndrng
|- CCfld e. DivRing

Proof

Step Hyp Ref Expression
1 cnfldbas
 |-  CC = ( Base ` CCfld )
2 1 a1i
 |-  ( T. -> CC = ( Base ` CCfld ) )
3 cnfldmul
 |-  x. = ( .r ` CCfld )
4 3 a1i
 |-  ( T. -> x. = ( .r ` CCfld ) )
5 cnfld0
 |-  0 = ( 0g ` CCfld )
6 5 a1i
 |-  ( T. -> 0 = ( 0g ` CCfld ) )
7 cnfld1
 |-  1 = ( 1r ` CCfld )
8 7 a1i
 |-  ( T. -> 1 = ( 1r ` CCfld ) )
9 cnring
 |-  CCfld e. Ring
10 9 a1i
 |-  ( T. -> CCfld e. Ring )
11 mulne0
 |-  ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 )
12 11 3adant1
 |-  ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 )
13 ax-1ne0
 |-  1 =/= 0
14 13 a1i
 |-  ( T. -> 1 =/= 0 )
15 reccl
 |-  ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC )
16 15 adantl
 |-  ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC )
17 recne0
 |-  ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) =/= 0 )
18 17 adantl
 |-  ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) =/= 0 )
19 recid2
 |-  ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) x. x ) = 1 )
20 19 adantl
 |-  ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( 1 / x ) x. x ) = 1 )
21 2 4 6 8 10 12 14 16 18 20 isdrngd
 |-  ( T. -> CCfld e. DivRing )
22 21 mptru
 |-  CCfld e. DivRing