Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
2 |
1
|
a1i |
|- ( T. -> CC = ( Base ` CCfld ) ) |
3 |
|
mpocnfldmul |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) |
4 |
3
|
a1i |
|- ( T. -> ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) ) |
5 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
6 |
5
|
a1i |
|- ( T. -> 0 = ( 0g ` CCfld ) ) |
7 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
8 |
7
|
a1i |
|- ( T. -> 1 = ( 1r ` CCfld ) ) |
9 |
|
cnring |
|- CCfld e. Ring |
10 |
9
|
a1i |
|- ( T. -> CCfld e. Ring ) |
11 |
|
ovmpot |
|- ( ( x e. CC /\ y e. CC ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( x x. y ) ) |
12 |
11
|
ad2ant2r |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( x x. y ) ) |
13 |
|
mulne0 |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
14 |
12 13
|
eqnetrd |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) =/= 0 ) |
15 |
14
|
3adant1 |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) =/= 0 ) |
16 |
|
ax-1ne0 |
|- 1 =/= 0 |
17 |
16
|
a1i |
|- ( T. -> 1 =/= 0 ) |
18 |
|
reccl |
|- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) |
19 |
18
|
adantl |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
20 |
|
simpl |
|- ( ( x e. CC /\ x =/= 0 ) -> x e. CC ) |
21 |
|
ovmpot |
|- ( ( ( 1 / x ) e. CC /\ x e. CC ) -> ( ( 1 / x ) ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = ( ( 1 / x ) x. x ) ) |
22 |
18 20 21
|
syl2anc |
|- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = ( ( 1 / x ) x. x ) ) |
23 |
|
recid2 |
|- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) x. x ) = 1 ) |
24 |
22 23
|
eqtrd |
|- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = 1 ) |
25 |
24
|
adantl |
|- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( 1 / x ) ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = 1 ) |
26 |
2 4 6 8 10 15 17 19 25
|
isdrngd |
|- ( T. -> CCfld e. DivRing ) |
27 |
26
|
mptru |
|- CCfld e. DivRing |