| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
|- ( A e. CC -> E. a e. RR E. b e. RR A = ( a + ( _i x. b ) ) ) |
| 2 |
|
ax-rnegex |
|- ( a e. RR -> E. c e. RR ( a + c ) = 0 ) |
| 3 |
|
ax-rnegex |
|- ( b e. RR -> E. d e. RR ( b + d ) = 0 ) |
| 4 |
2 3
|
anim12i |
|- ( ( a e. RR /\ b e. RR ) -> ( E. c e. RR ( a + c ) = 0 /\ E. d e. RR ( b + d ) = 0 ) ) |
| 5 |
|
reeanv |
|- ( E. c e. RR E. d e. RR ( ( a + c ) = 0 /\ ( b + d ) = 0 ) <-> ( E. c e. RR ( a + c ) = 0 /\ E. d e. RR ( b + d ) = 0 ) ) |
| 6 |
4 5
|
sylibr |
|- ( ( a e. RR /\ b e. RR ) -> E. c e. RR E. d e. RR ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
7
|
a1i |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> _i e. CC ) |
| 9 |
|
simplrr |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> d e. RR ) |
| 10 |
9
|
recnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> d e. CC ) |
| 11 |
8 10
|
mulcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. d ) e. CC ) |
| 12 |
|
simplrl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> c e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> c e. CC ) |
| 14 |
11 13
|
addcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( _i x. d ) + c ) e. CC ) |
| 15 |
|
simplll |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> a e. RR ) |
| 16 |
15
|
recnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> a e. CC ) |
| 17 |
|
simpllr |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> b e. RR ) |
| 18 |
17
|
recnd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> b e. CC ) |
| 19 |
8 18
|
mulcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. b ) e. CC ) |
| 20 |
16 19 11
|
addassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( a + ( _i x. b ) ) + ( _i x. d ) ) = ( a + ( ( _i x. b ) + ( _i x. d ) ) ) ) |
| 21 |
8 18 10
|
adddid |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. ( b + d ) ) = ( ( _i x. b ) + ( _i x. d ) ) ) |
| 22 |
|
simprr |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( b + d ) = 0 ) |
| 23 |
22
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. ( b + d ) ) = ( _i x. 0 ) ) |
| 24 |
|
mul01 |
|- ( _i e. CC -> ( _i x. 0 ) = 0 ) |
| 25 |
7 24
|
ax-mp |
|- ( _i x. 0 ) = 0 |
| 26 |
23 25
|
eqtrdi |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. ( b + d ) ) = 0 ) |
| 27 |
21 26
|
eqtr3d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( _i x. b ) + ( _i x. d ) ) = 0 ) |
| 28 |
27
|
oveq2d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + ( ( _i x. b ) + ( _i x. d ) ) ) = ( a + 0 ) ) |
| 29 |
|
addrid |
|- ( a e. CC -> ( a + 0 ) = a ) |
| 30 |
16 29
|
syl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + 0 ) = a ) |
| 31 |
20 28 30
|
3eqtrd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( a + ( _i x. b ) ) + ( _i x. d ) ) = a ) |
| 32 |
31
|
oveq1d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( ( a + ( _i x. b ) ) + ( _i x. d ) ) + c ) = ( a + c ) ) |
| 33 |
16 19
|
addcld |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + ( _i x. b ) ) e. CC ) |
| 34 |
33 11 13
|
addassd |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( ( a + ( _i x. b ) ) + ( _i x. d ) ) + c ) = ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) ) |
| 35 |
32 34
|
eqtr3d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + c ) = ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) ) |
| 36 |
|
simprl |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + c ) = 0 ) |
| 37 |
35 36
|
eqtr3d |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) = 0 ) |
| 38 |
|
oveq2 |
|- ( x = ( ( _i x. d ) + c ) -> ( ( a + ( _i x. b ) ) + x ) = ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) ) |
| 39 |
38
|
eqeq1d |
|- ( x = ( ( _i x. d ) + c ) -> ( ( ( a + ( _i x. b ) ) + x ) = 0 <-> ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) = 0 ) ) |
| 40 |
39
|
rspcev |
|- ( ( ( ( _i x. d ) + c ) e. CC /\ ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) = 0 ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) |
| 41 |
14 37 40
|
syl2anc |
|- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) |
| 42 |
41
|
ex |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( ( ( a + c ) = 0 /\ ( b + d ) = 0 ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) ) |
| 43 |
42
|
rexlimdvva |
|- ( ( a e. RR /\ b e. RR ) -> ( E. c e. RR E. d e. RR ( ( a + c ) = 0 /\ ( b + d ) = 0 ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) ) |
| 44 |
6 43
|
mpd |
|- ( ( a e. RR /\ b e. RR ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) |
| 45 |
|
oveq1 |
|- ( A = ( a + ( _i x. b ) ) -> ( A + x ) = ( ( a + ( _i x. b ) ) + x ) ) |
| 46 |
45
|
eqeq1d |
|- ( A = ( a + ( _i x. b ) ) -> ( ( A + x ) = 0 <-> ( ( a + ( _i x. b ) ) + x ) = 0 ) ) |
| 47 |
46
|
rexbidv |
|- ( A = ( a + ( _i x. b ) ) -> ( E. x e. CC ( A + x ) = 0 <-> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) ) |
| 48 |
44 47
|
syl5ibrcom |
|- ( ( a e. RR /\ b e. RR ) -> ( A = ( a + ( _i x. b ) ) -> E. x e. CC ( A + x ) = 0 ) ) |
| 49 |
48
|
rexlimivv |
|- ( E. a e. RR E. b e. RR A = ( a + ( _i x. b ) ) -> E. x e. CC ( A + x ) = 0 ) |
| 50 |
1 49
|
syl |
|- ( A e. CC -> E. x e. CC ( A + x ) = 0 ) |