| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
1 1
|
mulcli |
|- ( _i x. _i ) e. CC |
| 3 |
|
mulcl |
|- ( ( ( _i x. _i ) e. CC /\ A e. CC ) -> ( ( _i x. _i ) x. A ) e. CC ) |
| 4 |
2 3
|
mpan |
|- ( A e. CC -> ( ( _i x. _i ) x. A ) e. CC ) |
| 5 |
|
mullid |
|- ( A e. CC -> ( 1 x. A ) = A ) |
| 6 |
5
|
oveq2d |
|- ( A e. CC -> ( ( ( _i x. _i ) x. A ) + ( 1 x. A ) ) = ( ( ( _i x. _i ) x. A ) + A ) ) |
| 7 |
|
ax-i2m1 |
|- ( ( _i x. _i ) + 1 ) = 0 |
| 8 |
7
|
oveq1i |
|- ( ( ( _i x. _i ) + 1 ) x. A ) = ( 0 x. A ) |
| 9 |
|
ax-1cn |
|- 1 e. CC |
| 10 |
|
adddir |
|- ( ( ( _i x. _i ) e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( ( _i x. _i ) + 1 ) x. A ) = ( ( ( _i x. _i ) x. A ) + ( 1 x. A ) ) ) |
| 11 |
2 9 10
|
mp3an12 |
|- ( A e. CC -> ( ( ( _i x. _i ) + 1 ) x. A ) = ( ( ( _i x. _i ) x. A ) + ( 1 x. A ) ) ) |
| 12 |
|
mul02 |
|- ( A e. CC -> ( 0 x. A ) = 0 ) |
| 13 |
8 11 12
|
3eqtr3a |
|- ( A e. CC -> ( ( ( _i x. _i ) x. A ) + ( 1 x. A ) ) = 0 ) |
| 14 |
6 13
|
eqtr3d |
|- ( A e. CC -> ( ( ( _i x. _i ) x. A ) + A ) = 0 ) |
| 15 |
|
oveq1 |
|- ( x = ( ( _i x. _i ) x. A ) -> ( x + A ) = ( ( ( _i x. _i ) x. A ) + A ) ) |
| 16 |
15
|
eqeq1d |
|- ( x = ( ( _i x. _i ) x. A ) -> ( ( x + A ) = 0 <-> ( ( ( _i x. _i ) x. A ) + A ) = 0 ) ) |
| 17 |
16
|
rspcev |
|- ( ( ( ( _i x. _i ) x. A ) e. CC /\ ( ( ( _i x. _i ) x. A ) + A ) = 0 ) -> E. x e. CC ( x + A ) = 0 ) |
| 18 |
4 14 17
|
syl2anc |
|- ( A e. CC -> E. x e. CC ( x + A ) = 0 ) |