Metamath Proof Explorer


Theorem cnelprrecn

Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion cnelprrecn
|- CC e. { RR , CC }

Proof

Step Hyp Ref Expression
1 cnex
 |-  CC e. _V
2 1 prid2
 |-  CC e. { RR , CC }