Step |
Hyp |
Ref |
Expression |
1 |
|
reexALT |
|- RR e. _V |
2 |
1 1
|
xpex |
|- ( RR X. RR ) e. _V |
3 |
|
eqid |
|- ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
4 |
3
|
cnref1o |
|- ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -1-1-onto-> CC |
5 |
|
f1ofo |
|- ( ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -1-1-onto-> CC -> ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -onto-> CC ) |
6 |
4 5
|
ax-mp |
|- ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -onto-> CC |
7 |
|
fornex |
|- ( ( RR X. RR ) e. _V -> ( ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) : ( RR X. RR ) -onto-> CC -> CC e. _V ) ) |
8 |
2 6 7
|
mp2 |
|- CC e. _V |