Step |
Hyp |
Ref |
Expression |
1 |
|
cnextfrel.1 |
|- C = U. J |
2 |
|
cnextfrel.2 |
|- B = U. K |
3 |
|
relxp |
|- Rel ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
4 |
3
|
rgenw |
|- A. x e. ( ( cls ` J ) ` A ) Rel ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
5 |
|
reliun |
|- ( Rel U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> A. x e. ( ( cls ` J ) ` A ) Rel ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
6 |
4 5
|
mpbir |
|- Rel U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
7 |
1 2
|
cnextfval |
|- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
8 |
7
|
releqd |
|- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( Rel ( ( J CnExt K ) ` F ) <-> Rel U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
9 |
6 8
|
mpbiri |
|- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> Rel ( ( J CnExt K ) ` F ) ) |