| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s |  |-  S = dom ( _om CNF A ) | 
						
							| 2 |  | cnfcom.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cnfcom.b |  |-  ( ph -> B e. ( _om ^o A ) ) | 
						
							| 4 |  | cnfcom.f |  |-  F = ( `' ( _om CNF A ) ` B ) | 
						
							| 5 |  | cnfcom.g |  |-  G = OrdIso ( _E , ( F supp (/) ) ) | 
						
							| 6 |  | cnfcom.h |  |-  H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) | 
						
							| 7 |  | cnfcom.t |  |-  T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) | 
						
							| 8 |  | cnfcom.m |  |-  M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) | 
						
							| 9 |  | cnfcom.k |  |-  K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) | 
						
							| 10 |  | cnfcom.w |  |-  W = ( G ` U. dom G ) | 
						
							| 11 |  | cnfcom2.1 |  |-  ( ph -> (/) e. B ) | 
						
							| 12 |  | n0i |  |-  ( (/) e. B -> -. B = (/) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> -. B = (/) ) | 
						
							| 14 |  | omelon |  |-  _om e. On | 
						
							| 15 | 14 | a1i |  |-  ( ph -> _om e. On ) | 
						
							| 16 | 1 15 2 | cantnff1o |  |-  ( ph -> ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) ) | 
						
							| 17 |  | f1ocnv |  |-  ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) -> `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S ) | 
						
							| 18 |  | f1of |  |-  ( `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) | 
						
							| 19 | 16 17 18 | 3syl |  |-  ( ph -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) | 
						
							| 20 | 19 3 | ffvelcdmd |  |-  ( ph -> ( `' ( _om CNF A ) ` B ) e. S ) | 
						
							| 21 | 4 20 | eqeltrid |  |-  ( ph -> F e. S ) | 
						
							| 22 | 1 15 2 | cantnfs |  |-  ( ph -> ( F e. S <-> ( F : A --> _om /\ F finSupp (/) ) ) ) | 
						
							| 23 | 21 22 | mpbid |  |-  ( ph -> ( F : A --> _om /\ F finSupp (/) ) ) | 
						
							| 24 | 23 | simpld |  |-  ( ph -> F : A --> _om ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ dom G = (/) ) -> F : A --> _om ) | 
						
							| 26 | 25 | feqmptd |  |-  ( ( ph /\ dom G = (/) ) -> F = ( x e. A |-> ( F ` x ) ) ) | 
						
							| 27 |  | dif0 |  |-  ( A \ (/) ) = A | 
						
							| 28 | 27 | eleq2i |  |-  ( x e. ( A \ (/) ) <-> x e. A ) | 
						
							| 29 |  | simpr |  |-  ( ( ph /\ dom G = (/) ) -> dom G = (/) ) | 
						
							| 30 |  | ovexd |  |-  ( ph -> ( F supp (/) ) e. _V ) | 
						
							| 31 | 1 15 2 5 21 | cantnfcl |  |-  ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) ) | 
						
							| 32 | 31 | simpld |  |-  ( ph -> _E We ( F supp (/) ) ) | 
						
							| 33 | 5 | oien |  |-  ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> dom G ~~ ( F supp (/) ) ) | 
						
							| 34 | 30 32 33 | syl2anc |  |-  ( ph -> dom G ~~ ( F supp (/) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ dom G = (/) ) -> dom G ~~ ( F supp (/) ) ) | 
						
							| 36 | 29 35 | eqbrtrrd |  |-  ( ( ph /\ dom G = (/) ) -> (/) ~~ ( F supp (/) ) ) | 
						
							| 37 | 36 | ensymd |  |-  ( ( ph /\ dom G = (/) ) -> ( F supp (/) ) ~~ (/) ) | 
						
							| 38 |  | en0 |  |-  ( ( F supp (/) ) ~~ (/) <-> ( F supp (/) ) = (/) ) | 
						
							| 39 | 37 38 | sylib |  |-  ( ( ph /\ dom G = (/) ) -> ( F supp (/) ) = (/) ) | 
						
							| 40 |  | ss0b |  |-  ( ( F supp (/) ) C_ (/) <-> ( F supp (/) ) = (/) ) | 
						
							| 41 | 39 40 | sylibr |  |-  ( ( ph /\ dom G = (/) ) -> ( F supp (/) ) C_ (/) ) | 
						
							| 42 | 2 | adantr |  |-  ( ( ph /\ dom G = (/) ) -> A e. On ) | 
						
							| 43 |  | 0ex |  |-  (/) e. _V | 
						
							| 44 | 43 | a1i |  |-  ( ( ph /\ dom G = (/) ) -> (/) e. _V ) | 
						
							| 45 | 25 41 42 44 | suppssr |  |-  ( ( ( ph /\ dom G = (/) ) /\ x e. ( A \ (/) ) ) -> ( F ` x ) = (/) ) | 
						
							| 46 | 28 45 | sylan2br |  |-  ( ( ( ph /\ dom G = (/) ) /\ x e. A ) -> ( F ` x ) = (/) ) | 
						
							| 47 | 46 | mpteq2dva |  |-  ( ( ph /\ dom G = (/) ) -> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> (/) ) ) | 
						
							| 48 | 26 47 | eqtrd |  |-  ( ( ph /\ dom G = (/) ) -> F = ( x e. A |-> (/) ) ) | 
						
							| 49 |  | fconstmpt |  |-  ( A X. { (/) } ) = ( x e. A |-> (/) ) | 
						
							| 50 | 48 49 | eqtr4di |  |-  ( ( ph /\ dom G = (/) ) -> F = ( A X. { (/) } ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( ph /\ dom G = (/) ) -> ( ( _om CNF A ) ` F ) = ( ( _om CNF A ) ` ( A X. { (/) } ) ) ) | 
						
							| 52 | 4 | fveq2i |  |-  ( ( _om CNF A ) ` F ) = ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) | 
						
							| 53 |  | f1ocnvfv2 |  |-  ( ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) /\ B e. ( _om ^o A ) ) -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) | 
						
							| 54 | 16 3 53 | syl2anc |  |-  ( ph -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) | 
						
							| 55 | 52 54 | eqtrid |  |-  ( ph -> ( ( _om CNF A ) ` F ) = B ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ph /\ dom G = (/) ) -> ( ( _om CNF A ) ` F ) = B ) | 
						
							| 57 |  | peano1 |  |-  (/) e. _om | 
						
							| 58 | 57 | a1i |  |-  ( ph -> (/) e. _om ) | 
						
							| 59 | 1 15 2 58 | cantnf0 |  |-  ( ph -> ( ( _om CNF A ) ` ( A X. { (/) } ) ) = (/) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ dom G = (/) ) -> ( ( _om CNF A ) ` ( A X. { (/) } ) ) = (/) ) | 
						
							| 61 | 51 56 60 | 3eqtr3d |  |-  ( ( ph /\ dom G = (/) ) -> B = (/) ) | 
						
							| 62 | 13 61 | mtand |  |-  ( ph -> -. dom G = (/) ) | 
						
							| 63 |  | nnlim |  |-  ( dom G e. _om -> -. Lim dom G ) | 
						
							| 64 | 31 63 | simpl2im |  |-  ( ph -> -. Lim dom G ) | 
						
							| 65 |  | ioran |  |-  ( -. ( dom G = (/) \/ Lim dom G ) <-> ( -. dom G = (/) /\ -. Lim dom G ) ) | 
						
							| 66 | 62 64 65 | sylanbrc |  |-  ( ph -> -. ( dom G = (/) \/ Lim dom G ) ) | 
						
							| 67 | 5 | oicl |  |-  Ord dom G | 
						
							| 68 |  | unizlim |  |-  ( Ord dom G -> ( dom G = U. dom G <-> ( dom G = (/) \/ Lim dom G ) ) ) | 
						
							| 69 | 67 68 | ax-mp |  |-  ( dom G = U. dom G <-> ( dom G = (/) \/ Lim dom G ) ) | 
						
							| 70 | 66 69 | sylnibr |  |-  ( ph -> -. dom G = U. dom G ) | 
						
							| 71 |  | orduniorsuc |  |-  ( Ord dom G -> ( dom G = U. dom G \/ dom G = suc U. dom G ) ) | 
						
							| 72 | 67 71 | mp1i |  |-  ( ph -> ( dom G = U. dom G \/ dom G = suc U. dom G ) ) | 
						
							| 73 | 72 | ord |  |-  ( ph -> ( -. dom G = U. dom G -> dom G = suc U. dom G ) ) | 
						
							| 74 | 70 73 | mpd |  |-  ( ph -> dom G = suc U. dom G ) |