| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s |  |-  S = dom ( _om CNF A ) | 
						
							| 2 |  | cnfcom.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cnfcom.b |  |-  ( ph -> B e. ( _om ^o A ) ) | 
						
							| 4 |  | cnfcom.f |  |-  F = ( `' ( _om CNF A ) ` B ) | 
						
							| 5 |  | cnfcom.g |  |-  G = OrdIso ( _E , ( F supp (/) ) ) | 
						
							| 6 |  | cnfcom.h |  |-  H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) | 
						
							| 7 |  | cnfcom.t |  |-  T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) | 
						
							| 8 |  | cnfcom.m |  |-  M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) | 
						
							| 9 |  | cnfcom.k |  |-  K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) | 
						
							| 10 |  | cnfcom.w |  |-  W = ( G ` U. dom G ) | 
						
							| 11 |  | cnfcom3.1 |  |-  ( ph -> _om C_ B ) | 
						
							| 12 |  | cnfcom.x |  |-  X = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( F ` W ) .o v ) +o u ) ) | 
						
							| 13 |  | cnfcom.y |  |-  Y = ( u e. ( F ` W ) , v e. ( _om ^o W ) |-> ( ( ( _om ^o W ) .o u ) +o v ) ) | 
						
							| 14 |  | cnfcom.n |  |-  N = ( ( X o. `' Y ) o. ( T ` dom G ) ) | 
						
							| 15 |  | omelon |  |-  _om e. On | 
						
							| 16 |  | suppssdm |  |-  ( F supp (/) ) C_ dom F | 
						
							| 17 | 15 | a1i |  |-  ( ph -> _om e. On ) | 
						
							| 18 | 1 17 2 | cantnff1o |  |-  ( ph -> ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) ) | 
						
							| 19 |  | f1ocnv |  |-  ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) -> `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S ) | 
						
							| 20 |  | f1of |  |-  ( `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( ph -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) | 
						
							| 22 | 21 3 | ffvelcdmd |  |-  ( ph -> ( `' ( _om CNF A ) ` B ) e. S ) | 
						
							| 23 | 4 22 | eqeltrid |  |-  ( ph -> F e. S ) | 
						
							| 24 | 1 17 2 | cantnfs |  |-  ( ph -> ( F e. S <-> ( F : A --> _om /\ F finSupp (/) ) ) ) | 
						
							| 25 | 23 24 | mpbid |  |-  ( ph -> ( F : A --> _om /\ F finSupp (/) ) ) | 
						
							| 26 | 25 | simpld |  |-  ( ph -> F : A --> _om ) | 
						
							| 27 | 16 26 | fssdm |  |-  ( ph -> ( F supp (/) ) C_ A ) | 
						
							| 28 |  | ovex |  |-  ( F supp (/) ) e. _V | 
						
							| 29 | 5 | oion |  |-  ( ( F supp (/) ) e. _V -> dom G e. On ) | 
						
							| 30 | 28 29 | ax-mp |  |-  dom G e. On | 
						
							| 31 | 30 | elexi |  |-  dom G e. _V | 
						
							| 32 | 31 | uniex |  |-  U. dom G e. _V | 
						
							| 33 | 32 | sucid |  |-  U. dom G e. suc U. dom G | 
						
							| 34 |  | peano1 |  |-  (/) e. _om | 
						
							| 35 | 34 | a1i |  |-  ( ph -> (/) e. _om ) | 
						
							| 36 | 11 35 | sseldd |  |-  ( ph -> (/) e. B ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 9 10 36 | cnfcom2lem |  |-  ( ph -> dom G = suc U. dom G ) | 
						
							| 38 | 33 37 | eleqtrrid |  |-  ( ph -> U. dom G e. dom G ) | 
						
							| 39 | 5 | oif |  |-  G : dom G --> ( F supp (/) ) | 
						
							| 40 | 39 | ffvelcdmi |  |-  ( U. dom G e. dom G -> ( G ` U. dom G ) e. ( F supp (/) ) ) | 
						
							| 41 | 38 40 | syl |  |-  ( ph -> ( G ` U. dom G ) e. ( F supp (/) ) ) | 
						
							| 42 | 10 41 | eqeltrid |  |-  ( ph -> W e. ( F supp (/) ) ) | 
						
							| 43 | 27 42 | sseldd |  |-  ( ph -> W e. A ) | 
						
							| 44 |  | onelon |  |-  ( ( A e. On /\ W e. A ) -> W e. On ) | 
						
							| 45 | 2 43 44 | syl2anc |  |-  ( ph -> W e. On ) | 
						
							| 46 |  | oecl |  |-  ( ( _om e. On /\ W e. On ) -> ( _om ^o W ) e. On ) | 
						
							| 47 | 15 45 46 | sylancr |  |-  ( ph -> ( _om ^o W ) e. On ) | 
						
							| 48 | 26 43 | ffvelcdmd |  |-  ( ph -> ( F ` W ) e. _om ) | 
						
							| 49 |  | nnon |  |-  ( ( F ` W ) e. _om -> ( F ` W ) e. On ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> ( F ` W ) e. On ) | 
						
							| 51 | 13 12 | omf1o |  |-  ( ( ( _om ^o W ) e. On /\ ( F ` W ) e. On ) -> ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( ( F ` W ) .o ( _om ^o W ) ) ) | 
						
							| 52 | 47 50 51 | syl2anc |  |-  ( ph -> ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( ( F ` W ) .o ( _om ^o W ) ) ) | 
						
							| 53 | 26 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 54 |  | 0ex |  |-  (/) e. _V | 
						
							| 55 | 54 | a1i |  |-  ( ph -> (/) e. _V ) | 
						
							| 56 |  | elsuppfn |  |-  ( ( F Fn A /\ A e. On /\ (/) e. _V ) -> ( W e. ( F supp (/) ) <-> ( W e. A /\ ( F ` W ) =/= (/) ) ) ) | 
						
							| 57 | 53 2 55 56 | syl3anc |  |-  ( ph -> ( W e. ( F supp (/) ) <-> ( W e. A /\ ( F ` W ) =/= (/) ) ) ) | 
						
							| 58 |  | simpr |  |-  ( ( W e. A /\ ( F ` W ) =/= (/) ) -> ( F ` W ) =/= (/) ) | 
						
							| 59 | 57 58 | biimtrdi |  |-  ( ph -> ( W e. ( F supp (/) ) -> ( F ` W ) =/= (/) ) ) | 
						
							| 60 | 42 59 | mpd |  |-  ( ph -> ( F ` W ) =/= (/) ) | 
						
							| 61 |  | on0eln0 |  |-  ( ( F ` W ) e. On -> ( (/) e. ( F ` W ) <-> ( F ` W ) =/= (/) ) ) | 
						
							| 62 | 48 49 61 | 3syl |  |-  ( ph -> ( (/) e. ( F ` W ) <-> ( F ` W ) =/= (/) ) ) | 
						
							| 63 | 60 62 | mpbird |  |-  ( ph -> (/) e. ( F ` W ) ) | 
						
							| 64 | 1 2 3 4 5 6 7 8 9 10 11 | cnfcom3lem |  |-  ( ph -> W e. ( On \ 1o ) ) | 
						
							| 65 |  | ondif1 |  |-  ( W e. ( On \ 1o ) <-> ( W e. On /\ (/) e. W ) ) | 
						
							| 66 | 65 | simprbi |  |-  ( W e. ( On \ 1o ) -> (/) e. W ) | 
						
							| 67 | 64 66 | syl |  |-  ( ph -> (/) e. W ) | 
						
							| 68 |  | omabs |  |-  ( ( ( ( F ` W ) e. _om /\ (/) e. ( F ` W ) ) /\ ( W e. On /\ (/) e. W ) ) -> ( ( F ` W ) .o ( _om ^o W ) ) = ( _om ^o W ) ) | 
						
							| 69 | 48 63 45 67 68 | syl22anc |  |-  ( ph -> ( ( F ` W ) .o ( _om ^o W ) ) = ( _om ^o W ) ) | 
						
							| 70 | 69 | f1oeq3d |  |-  ( ph -> ( ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( ( F ` W ) .o ( _om ^o W ) ) <-> ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( _om ^o W ) ) ) | 
						
							| 71 | 52 70 | mpbid |  |-  ( ph -> ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( _om ^o W ) ) | 
						
							| 72 | 1 2 3 4 5 6 7 8 9 10 36 | cnfcom2 |  |-  ( ph -> ( T ` dom G ) : B -1-1-onto-> ( ( _om ^o W ) .o ( F ` W ) ) ) | 
						
							| 73 |  | f1oco |  |-  ( ( ( X o. `' Y ) : ( ( _om ^o W ) .o ( F ` W ) ) -1-1-onto-> ( _om ^o W ) /\ ( T ` dom G ) : B -1-1-onto-> ( ( _om ^o W ) .o ( F ` W ) ) ) -> ( ( X o. `' Y ) o. ( T ` dom G ) ) : B -1-1-onto-> ( _om ^o W ) ) | 
						
							| 74 | 71 72 73 | syl2anc |  |-  ( ph -> ( ( X o. `' Y ) o. ( T ` dom G ) ) : B -1-1-onto-> ( _om ^o W ) ) | 
						
							| 75 |  | f1oeq1 |  |-  ( N = ( ( X o. `' Y ) o. ( T ` dom G ) ) -> ( N : B -1-1-onto-> ( _om ^o W ) <-> ( ( X o. `' Y ) o. ( T ` dom G ) ) : B -1-1-onto-> ( _om ^o W ) ) ) | 
						
							| 76 | 14 75 | ax-mp |  |-  ( N : B -1-1-onto-> ( _om ^o W ) <-> ( ( X o. `' Y ) o. ( T ` dom G ) ) : B -1-1-onto-> ( _om ^o W ) ) | 
						
							| 77 | 74 76 | sylibr |  |-  ( ph -> N : B -1-1-onto-> ( _om ^o W ) ) |