Step |
Hyp |
Ref |
Expression |
1 |
|
cnfcom.s |
|- S = dom ( _om CNF A ) |
2 |
|
cnfcom.a |
|- ( ph -> A e. On ) |
3 |
|
cnfcom.b |
|- ( ph -> B e. ( _om ^o A ) ) |
4 |
|
cnfcom.f |
|- F = ( `' ( _om CNF A ) ` B ) |
5 |
|
cnfcom.g |
|- G = OrdIso ( _E , ( F supp (/) ) ) |
6 |
|
cnfcom.h |
|- H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) |
7 |
|
cnfcom.t |
|- T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) |
8 |
|
cnfcom.m |
|- M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) |
9 |
|
cnfcom.k |
|- K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) |
10 |
|
cnfcom.w |
|- W = ( G ` U. dom G ) |
11 |
|
cnfcom3.1 |
|- ( ph -> _om C_ B ) |
12 |
|
suppssdm |
|- ( F supp (/) ) C_ dom F |
13 |
|
omelon |
|- _om e. On |
14 |
13
|
a1i |
|- ( ph -> _om e. On ) |
15 |
1 14 2
|
cantnff1o |
|- ( ph -> ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) ) |
16 |
|
f1ocnv |
|- ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) -> `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S ) |
17 |
|
f1of |
|- ( `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) |
18 |
15 16 17
|
3syl |
|- ( ph -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) |
19 |
18 3
|
ffvelrnd |
|- ( ph -> ( `' ( _om CNF A ) ` B ) e. S ) |
20 |
4 19
|
eqeltrid |
|- ( ph -> F e. S ) |
21 |
1 14 2
|
cantnfs |
|- ( ph -> ( F e. S <-> ( F : A --> _om /\ F finSupp (/) ) ) ) |
22 |
20 21
|
mpbid |
|- ( ph -> ( F : A --> _om /\ F finSupp (/) ) ) |
23 |
22
|
simpld |
|- ( ph -> F : A --> _om ) |
24 |
12 23
|
fssdm |
|- ( ph -> ( F supp (/) ) C_ A ) |
25 |
|
ovex |
|- ( F supp (/) ) e. _V |
26 |
5
|
oion |
|- ( ( F supp (/) ) e. _V -> dom G e. On ) |
27 |
25 26
|
ax-mp |
|- dom G e. On |
28 |
27
|
elexi |
|- dom G e. _V |
29 |
28
|
uniex |
|- U. dom G e. _V |
30 |
29
|
sucid |
|- U. dom G e. suc U. dom G |
31 |
|
peano1 |
|- (/) e. _om |
32 |
31
|
a1i |
|- ( ph -> (/) e. _om ) |
33 |
11 32
|
sseldd |
|- ( ph -> (/) e. B ) |
34 |
1 2 3 4 5 6 7 8 9 10 33
|
cnfcom2lem |
|- ( ph -> dom G = suc U. dom G ) |
35 |
30 34
|
eleqtrrid |
|- ( ph -> U. dom G e. dom G ) |
36 |
5
|
oif |
|- G : dom G --> ( F supp (/) ) |
37 |
36
|
ffvelrni |
|- ( U. dom G e. dom G -> ( G ` U. dom G ) e. ( F supp (/) ) ) |
38 |
35 37
|
syl |
|- ( ph -> ( G ` U. dom G ) e. ( F supp (/) ) ) |
39 |
24 38
|
sseldd |
|- ( ph -> ( G ` U. dom G ) e. A ) |
40 |
|
onelon |
|- ( ( A e. On /\ ( G ` U. dom G ) e. A ) -> ( G ` U. dom G ) e. On ) |
41 |
2 39 40
|
syl2anc |
|- ( ph -> ( G ` U. dom G ) e. On ) |
42 |
10 41
|
eqeltrid |
|- ( ph -> W e. On ) |
43 |
|
oecl |
|- ( ( _om e. On /\ A e. On ) -> ( _om ^o A ) e. On ) |
44 |
13 2 43
|
sylancr |
|- ( ph -> ( _om ^o A ) e. On ) |
45 |
|
onelon |
|- ( ( ( _om ^o A ) e. On /\ B e. ( _om ^o A ) ) -> B e. On ) |
46 |
44 3 45
|
syl2anc |
|- ( ph -> B e. On ) |
47 |
|
ontri1 |
|- ( ( _om e. On /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) ) |
48 |
13 46 47
|
sylancr |
|- ( ph -> ( _om C_ B <-> -. B e. _om ) ) |
49 |
11 48
|
mpbid |
|- ( ph -> -. B e. _om ) |
50 |
4
|
fveq2i |
|- ( ( _om CNF A ) ` F ) = ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) |
51 |
|
f1ocnvfv2 |
|- ( ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) /\ B e. ( _om ^o A ) ) -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) |
52 |
15 3 51
|
syl2anc |
|- ( ph -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) |
53 |
50 52
|
eqtrid |
|- ( ph -> ( ( _om CNF A ) ` F ) = B ) |
54 |
53
|
adantr |
|- ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) = B ) |
55 |
13
|
a1i |
|- ( ( ph /\ W = (/) ) -> _om e. On ) |
56 |
2
|
adantr |
|- ( ( ph /\ W = (/) ) -> A e. On ) |
57 |
20
|
adantr |
|- ( ( ph /\ W = (/) ) -> F e. S ) |
58 |
31
|
a1i |
|- ( ( ph /\ W = (/) ) -> (/) e. _om ) |
59 |
|
1on |
|- 1o e. On |
60 |
59
|
a1i |
|- ( ( ph /\ W = (/) ) -> 1o e. On ) |
61 |
|
ovexd |
|- ( ph -> ( F supp (/) ) e. _V ) |
62 |
1 14 2 5 20
|
cantnfcl |
|- ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) ) |
63 |
62
|
simpld |
|- ( ph -> _E We ( F supp (/) ) ) |
64 |
5
|
oiiso |
|- ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) |
65 |
61 63 64
|
syl2anc |
|- ( ph -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) |
66 |
65
|
ad2antrr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) |
67 |
|
isof1o |
|- ( G Isom _E , _E ( dom G , ( F supp (/) ) ) -> G : dom G -1-1-onto-> ( F supp (/) ) ) |
68 |
66 67
|
syl |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> G : dom G -1-1-onto-> ( F supp (/) ) ) |
69 |
|
f1ocnv |
|- ( G : dom G -1-1-onto-> ( F supp (/) ) -> `' G : ( F supp (/) ) -1-1-onto-> dom G ) |
70 |
|
f1of |
|- ( `' G : ( F supp (/) ) -1-1-onto-> dom G -> `' G : ( F supp (/) ) --> dom G ) |
71 |
68 69 70
|
3syl |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> `' G : ( F supp (/) ) --> dom G ) |
72 |
|
ffvelrn |
|- ( ( `' G : ( F supp (/) ) --> dom G /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. dom G ) |
73 |
71 72
|
sylancom |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. dom G ) |
74 |
|
elssuni |
|- ( ( `' G ` x ) e. dom G -> ( `' G ` x ) C_ U. dom G ) |
75 |
73 74
|
syl |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) C_ U. dom G ) |
76 |
|
onelon |
|- ( ( dom G e. On /\ ( `' G ` x ) e. dom G ) -> ( `' G ` x ) e. On ) |
77 |
27 73 76
|
sylancr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. On ) |
78 |
|
onuni |
|- ( dom G e. On -> U. dom G e. On ) |
79 |
27 78
|
ax-mp |
|- U. dom G e. On |
80 |
|
ontri1 |
|- ( ( ( `' G ` x ) e. On /\ U. dom G e. On ) -> ( ( `' G ` x ) C_ U. dom G <-> -. U. dom G e. ( `' G ` x ) ) ) |
81 |
77 79 80
|
sylancl |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( ( `' G ` x ) C_ U. dom G <-> -. U. dom G e. ( `' G ` x ) ) ) |
82 |
75 81
|
mpbid |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> -. U. dom G e. ( `' G ` x ) ) |
83 |
35
|
ad2antrr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> U. dom G e. dom G ) |
84 |
|
isorel |
|- ( ( G Isom _E , _E ( dom G , ( F supp (/) ) ) /\ ( U. dom G e. dom G /\ ( `' G ` x ) e. dom G ) ) -> ( U. dom G _E ( `' G ` x ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) ) |
85 |
66 83 73 84
|
syl12anc |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G _E ( `' G ` x ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) ) |
86 |
|
fvex |
|- ( `' G ` x ) e. _V |
87 |
86
|
epeli |
|- ( U. dom G _E ( `' G ` x ) <-> U. dom G e. ( `' G ` x ) ) |
88 |
10
|
breq1i |
|- ( W _E ( G ` ( `' G ` x ) ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) |
89 |
|
fvex |
|- ( G ` ( `' G ` x ) ) e. _V |
90 |
89
|
epeli |
|- ( W _E ( G ` ( `' G ` x ) ) <-> W e. ( G ` ( `' G ` x ) ) ) |
91 |
88 90
|
bitr3i |
|- ( ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) <-> W e. ( G ` ( `' G ` x ) ) ) |
92 |
85 87 91
|
3bitr3g |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G e. ( `' G ` x ) <-> W e. ( G ` ( `' G ` x ) ) ) ) |
93 |
|
simplr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> W = (/) ) |
94 |
|
f1ocnvfv2 |
|- ( ( G : dom G -1-1-onto-> ( F supp (/) ) /\ x e. ( F supp (/) ) ) -> ( G ` ( `' G ` x ) ) = x ) |
95 |
68 94
|
sylancom |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( G ` ( `' G ` x ) ) = x ) |
96 |
93 95
|
eleq12d |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( W e. ( G ` ( `' G ` x ) ) <-> (/) e. x ) ) |
97 |
92 96
|
bitrd |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G e. ( `' G ` x ) <-> (/) e. x ) ) |
98 |
82 97
|
mtbid |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> -. (/) e. x ) |
99 |
|
onss |
|- ( A e. On -> A C_ On ) |
100 |
2 99
|
syl |
|- ( ph -> A C_ On ) |
101 |
24 100
|
sstrd |
|- ( ph -> ( F supp (/) ) C_ On ) |
102 |
101
|
adantr |
|- ( ( ph /\ W = (/) ) -> ( F supp (/) ) C_ On ) |
103 |
102
|
sselda |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x e. On ) |
104 |
|
on0eqel |
|- ( x e. On -> ( x = (/) \/ (/) e. x ) ) |
105 |
103 104
|
syl |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( x = (/) \/ (/) e. x ) ) |
106 |
105
|
ord |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( -. x = (/) -> (/) e. x ) ) |
107 |
98 106
|
mt3d |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x = (/) ) |
108 |
|
el1o |
|- ( x e. 1o <-> x = (/) ) |
109 |
107 108
|
sylibr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x e. 1o ) |
110 |
109
|
ex |
|- ( ( ph /\ W = (/) ) -> ( x e. ( F supp (/) ) -> x e. 1o ) ) |
111 |
110
|
ssrdv |
|- ( ( ph /\ W = (/) ) -> ( F supp (/) ) C_ 1o ) |
112 |
1 55 56 57 58 60 111
|
cantnflt2 |
|- ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) e. ( _om ^o 1o ) ) |
113 |
|
oe1 |
|- ( _om e. On -> ( _om ^o 1o ) = _om ) |
114 |
13 113
|
ax-mp |
|- ( _om ^o 1o ) = _om |
115 |
112 114
|
eleqtrdi |
|- ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) e. _om ) |
116 |
54 115
|
eqeltrrd |
|- ( ( ph /\ W = (/) ) -> B e. _om ) |
117 |
116
|
ex |
|- ( ph -> ( W = (/) -> B e. _om ) ) |
118 |
117
|
necon3bd |
|- ( ph -> ( -. B e. _om -> W =/= (/) ) ) |
119 |
49 118
|
mpd |
|- ( ph -> W =/= (/) ) |
120 |
|
dif1o |
|- ( W e. ( On \ 1o ) <-> ( W e. On /\ W =/= (/) ) ) |
121 |
42 119 120
|
sylanbrc |
|- ( ph -> W e. ( On \ 1o ) ) |