| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s |  |-  S = dom ( _om CNF A ) | 
						
							| 2 |  | cnfcom.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cnfcom.b |  |-  ( ph -> B e. ( _om ^o A ) ) | 
						
							| 4 |  | cnfcom.f |  |-  F = ( `' ( _om CNF A ) ` B ) | 
						
							| 5 |  | cnfcom.g |  |-  G = OrdIso ( _E , ( F supp (/) ) ) | 
						
							| 6 |  | cnfcom.h |  |-  H = seqom ( ( k e. _V , z e. _V |-> ( M +o z ) ) , (/) ) | 
						
							| 7 |  | cnfcom.t |  |-  T = seqom ( ( k e. _V , f e. _V |-> K ) , (/) ) | 
						
							| 8 |  | cnfcom.m |  |-  M = ( ( _om ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) | 
						
							| 9 |  | cnfcom.k |  |-  K = ( ( x e. M |-> ( dom f +o x ) ) u. `' ( x e. dom f |-> ( M +o x ) ) ) | 
						
							| 10 |  | cnfcom.w |  |-  W = ( G ` U. dom G ) | 
						
							| 11 |  | cnfcom3.1 |  |-  ( ph -> _om C_ B ) | 
						
							| 12 |  | suppssdm |  |-  ( F supp (/) ) C_ dom F | 
						
							| 13 |  | omelon |  |-  _om e. On | 
						
							| 14 | 13 | a1i |  |-  ( ph -> _om e. On ) | 
						
							| 15 | 1 14 2 | cantnff1o |  |-  ( ph -> ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) ) | 
						
							| 16 |  | f1ocnv |  |-  ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) -> `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S ) | 
						
							| 17 |  | f1of |  |-  ( `' ( _om CNF A ) : ( _om ^o A ) -1-1-onto-> S -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) | 
						
							| 18 | 15 16 17 | 3syl |  |-  ( ph -> `' ( _om CNF A ) : ( _om ^o A ) --> S ) | 
						
							| 19 | 18 3 | ffvelcdmd |  |-  ( ph -> ( `' ( _om CNF A ) ` B ) e. S ) | 
						
							| 20 | 4 19 | eqeltrid |  |-  ( ph -> F e. S ) | 
						
							| 21 | 1 14 2 | cantnfs |  |-  ( ph -> ( F e. S <-> ( F : A --> _om /\ F finSupp (/) ) ) ) | 
						
							| 22 | 20 21 | mpbid |  |-  ( ph -> ( F : A --> _om /\ F finSupp (/) ) ) | 
						
							| 23 | 22 | simpld |  |-  ( ph -> F : A --> _om ) | 
						
							| 24 | 12 23 | fssdm |  |-  ( ph -> ( F supp (/) ) C_ A ) | 
						
							| 25 |  | ovex |  |-  ( F supp (/) ) e. _V | 
						
							| 26 | 5 | oion |  |-  ( ( F supp (/) ) e. _V -> dom G e. On ) | 
						
							| 27 | 25 26 | ax-mp |  |-  dom G e. On | 
						
							| 28 | 27 | elexi |  |-  dom G e. _V | 
						
							| 29 | 28 | uniex |  |-  U. dom G e. _V | 
						
							| 30 | 29 | sucid |  |-  U. dom G e. suc U. dom G | 
						
							| 31 |  | peano1 |  |-  (/) e. _om | 
						
							| 32 | 31 | a1i |  |-  ( ph -> (/) e. _om ) | 
						
							| 33 | 11 32 | sseldd |  |-  ( ph -> (/) e. B ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 33 | cnfcom2lem |  |-  ( ph -> dom G = suc U. dom G ) | 
						
							| 35 | 30 34 | eleqtrrid |  |-  ( ph -> U. dom G e. dom G ) | 
						
							| 36 | 5 | oif |  |-  G : dom G --> ( F supp (/) ) | 
						
							| 37 | 36 | ffvelcdmi |  |-  ( U. dom G e. dom G -> ( G ` U. dom G ) e. ( F supp (/) ) ) | 
						
							| 38 | 35 37 | syl |  |-  ( ph -> ( G ` U. dom G ) e. ( F supp (/) ) ) | 
						
							| 39 | 24 38 | sseldd |  |-  ( ph -> ( G ` U. dom G ) e. A ) | 
						
							| 40 |  | onelon |  |-  ( ( A e. On /\ ( G ` U. dom G ) e. A ) -> ( G ` U. dom G ) e. On ) | 
						
							| 41 | 2 39 40 | syl2anc |  |-  ( ph -> ( G ` U. dom G ) e. On ) | 
						
							| 42 | 10 41 | eqeltrid |  |-  ( ph -> W e. On ) | 
						
							| 43 |  | oecl |  |-  ( ( _om e. On /\ A e. On ) -> ( _om ^o A ) e. On ) | 
						
							| 44 | 13 2 43 | sylancr |  |-  ( ph -> ( _om ^o A ) e. On ) | 
						
							| 45 |  | onelon |  |-  ( ( ( _om ^o A ) e. On /\ B e. ( _om ^o A ) ) -> B e. On ) | 
						
							| 46 | 44 3 45 | syl2anc |  |-  ( ph -> B e. On ) | 
						
							| 47 |  | ontri1 |  |-  ( ( _om e. On /\ B e. On ) -> ( _om C_ B <-> -. B e. _om ) ) | 
						
							| 48 | 13 46 47 | sylancr |  |-  ( ph -> ( _om C_ B <-> -. B e. _om ) ) | 
						
							| 49 | 11 48 | mpbid |  |-  ( ph -> -. B e. _om ) | 
						
							| 50 | 4 | fveq2i |  |-  ( ( _om CNF A ) ` F ) = ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) | 
						
							| 51 |  | f1ocnvfv2 |  |-  ( ( ( _om CNF A ) : S -1-1-onto-> ( _om ^o A ) /\ B e. ( _om ^o A ) ) -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) | 
						
							| 52 | 15 3 51 | syl2anc |  |-  ( ph -> ( ( _om CNF A ) ` ( `' ( _om CNF A ) ` B ) ) = B ) | 
						
							| 53 | 50 52 | eqtrid |  |-  ( ph -> ( ( _om CNF A ) ` F ) = B ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) = B ) | 
						
							| 55 | 13 | a1i |  |-  ( ( ph /\ W = (/) ) -> _om e. On ) | 
						
							| 56 | 2 | adantr |  |-  ( ( ph /\ W = (/) ) -> A e. On ) | 
						
							| 57 | 20 | adantr |  |-  ( ( ph /\ W = (/) ) -> F e. S ) | 
						
							| 58 | 31 | a1i |  |-  ( ( ph /\ W = (/) ) -> (/) e. _om ) | 
						
							| 59 |  | 1on |  |-  1o e. On | 
						
							| 60 | 59 | a1i |  |-  ( ( ph /\ W = (/) ) -> 1o e. On ) | 
						
							| 61 |  | ovexd |  |-  ( ph -> ( F supp (/) ) e. _V ) | 
						
							| 62 | 1 14 2 5 20 | cantnfcl |  |-  ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) ) | 
						
							| 63 | 62 | simpld |  |-  ( ph -> _E We ( F supp (/) ) ) | 
						
							| 64 | 5 | oiiso |  |-  ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) | 
						
							| 65 | 61 63 64 | syl2anc |  |-  ( ph -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) | 
						
							| 66 | 65 | ad2antrr |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> G Isom _E , _E ( dom G , ( F supp (/) ) ) ) | 
						
							| 67 |  | isof1o |  |-  ( G Isom _E , _E ( dom G , ( F supp (/) ) ) -> G : dom G -1-1-onto-> ( F supp (/) ) ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> G : dom G -1-1-onto-> ( F supp (/) ) ) | 
						
							| 69 |  | f1ocnv |  |-  ( G : dom G -1-1-onto-> ( F supp (/) ) -> `' G : ( F supp (/) ) -1-1-onto-> dom G ) | 
						
							| 70 |  | f1of |  |-  ( `' G : ( F supp (/) ) -1-1-onto-> dom G -> `' G : ( F supp (/) ) --> dom G ) | 
						
							| 71 | 68 69 70 | 3syl |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> `' G : ( F supp (/) ) --> dom G ) | 
						
							| 72 |  | ffvelcdm |  |-  ( ( `' G : ( F supp (/) ) --> dom G /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. dom G ) | 
						
							| 73 | 71 72 | sylancom |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. dom G ) | 
						
							| 74 |  | elssuni |  |-  ( ( `' G ` x ) e. dom G -> ( `' G ` x ) C_ U. dom G ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) C_ U. dom G ) | 
						
							| 76 |  | onelon |  |-  ( ( dom G e. On /\ ( `' G ` x ) e. dom G ) -> ( `' G ` x ) e. On ) | 
						
							| 77 | 27 73 76 | sylancr |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( `' G ` x ) e. On ) | 
						
							| 78 |  | onuni |  |-  ( dom G e. On -> U. dom G e. On ) | 
						
							| 79 | 27 78 | ax-mp |  |-  U. dom G e. On | 
						
							| 80 |  | ontri1 |  |-  ( ( ( `' G ` x ) e. On /\ U. dom G e. On ) -> ( ( `' G ` x ) C_ U. dom G <-> -. U. dom G e. ( `' G ` x ) ) ) | 
						
							| 81 | 77 79 80 | sylancl |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( ( `' G ` x ) C_ U. dom G <-> -. U. dom G e. ( `' G ` x ) ) ) | 
						
							| 82 | 75 81 | mpbid |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> -. U. dom G e. ( `' G ` x ) ) | 
						
							| 83 | 35 | ad2antrr |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> U. dom G e. dom G ) | 
						
							| 84 |  | isorel |  |-  ( ( G Isom _E , _E ( dom G , ( F supp (/) ) ) /\ ( U. dom G e. dom G /\ ( `' G ` x ) e. dom G ) ) -> ( U. dom G _E ( `' G ` x ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) ) | 
						
							| 85 | 66 83 73 84 | syl12anc |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G _E ( `' G ` x ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) ) | 
						
							| 86 |  | fvex |  |-  ( `' G ` x ) e. _V | 
						
							| 87 | 86 | epeli |  |-  ( U. dom G _E ( `' G ` x ) <-> U. dom G e. ( `' G ` x ) ) | 
						
							| 88 | 10 | breq1i |  |-  ( W _E ( G ` ( `' G ` x ) ) <-> ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) ) | 
						
							| 89 |  | fvex |  |-  ( G ` ( `' G ` x ) ) e. _V | 
						
							| 90 | 89 | epeli |  |-  ( W _E ( G ` ( `' G ` x ) ) <-> W e. ( G ` ( `' G ` x ) ) ) | 
						
							| 91 | 88 90 | bitr3i |  |-  ( ( G ` U. dom G ) _E ( G ` ( `' G ` x ) ) <-> W e. ( G ` ( `' G ` x ) ) ) | 
						
							| 92 | 85 87 91 | 3bitr3g |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G e. ( `' G ` x ) <-> W e. ( G ` ( `' G ` x ) ) ) ) | 
						
							| 93 |  | simplr |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> W = (/) ) | 
						
							| 94 |  | f1ocnvfv2 |  |-  ( ( G : dom G -1-1-onto-> ( F supp (/) ) /\ x e. ( F supp (/) ) ) -> ( G ` ( `' G ` x ) ) = x ) | 
						
							| 95 | 68 94 | sylancom |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( G ` ( `' G ` x ) ) = x ) | 
						
							| 96 | 93 95 | eleq12d |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( W e. ( G ` ( `' G ` x ) ) <-> (/) e. x ) ) | 
						
							| 97 | 92 96 | bitrd |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( U. dom G e. ( `' G ` x ) <-> (/) e. x ) ) | 
						
							| 98 | 82 97 | mtbid |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> -. (/) e. x ) | 
						
							| 99 |  | onss |  |-  ( A e. On -> A C_ On ) | 
						
							| 100 | 2 99 | syl |  |-  ( ph -> A C_ On ) | 
						
							| 101 | 24 100 | sstrd |  |-  ( ph -> ( F supp (/) ) C_ On ) | 
						
							| 102 | 101 | adantr |  |-  ( ( ph /\ W = (/) ) -> ( F supp (/) ) C_ On ) | 
						
							| 103 | 102 | sselda |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x e. On ) | 
						
							| 104 |  | on0eqel |  |-  ( x e. On -> ( x = (/) \/ (/) e. x ) ) | 
						
							| 105 | 103 104 | syl |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( x = (/) \/ (/) e. x ) ) | 
						
							| 106 | 105 | ord |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> ( -. x = (/) -> (/) e. x ) ) | 
						
							| 107 | 98 106 | mt3d |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x = (/) ) | 
						
							| 108 |  | el1o |  |-  ( x e. 1o <-> x = (/) ) | 
						
							| 109 | 107 108 | sylibr |  |-  ( ( ( ph /\ W = (/) ) /\ x e. ( F supp (/) ) ) -> x e. 1o ) | 
						
							| 110 | 109 | ex |  |-  ( ( ph /\ W = (/) ) -> ( x e. ( F supp (/) ) -> x e. 1o ) ) | 
						
							| 111 | 110 | ssrdv |  |-  ( ( ph /\ W = (/) ) -> ( F supp (/) ) C_ 1o ) | 
						
							| 112 | 1 55 56 57 58 60 111 | cantnflt2 |  |-  ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) e. ( _om ^o 1o ) ) | 
						
							| 113 |  | oe1 |  |-  ( _om e. On -> ( _om ^o 1o ) = _om ) | 
						
							| 114 | 13 113 | ax-mp |  |-  ( _om ^o 1o ) = _om | 
						
							| 115 | 112 114 | eleqtrdi |  |-  ( ( ph /\ W = (/) ) -> ( ( _om CNF A ) ` F ) e. _om ) | 
						
							| 116 | 54 115 | eqeltrrd |  |-  ( ( ph /\ W = (/) ) -> B e. _om ) | 
						
							| 117 | 116 | ex |  |-  ( ph -> ( W = (/) -> B e. _om ) ) | 
						
							| 118 | 117 | necon3bd |  |-  ( ph -> ( -. B e. _om -> W =/= (/) ) ) | 
						
							| 119 | 49 118 | mpd |  |-  ( ph -> W =/= (/) ) | 
						
							| 120 |  | dif1o |  |-  ( W e. ( On \ 1o ) <-> ( W e. On /\ W =/= (/) ) ) | 
						
							| 121 | 42 119 120 | sylanbrc |  |-  ( ph -> W e. ( On \ 1o ) ) |