Description: Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfld0 | |- 0 = ( 0g ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 00id | |- ( 0 + 0 ) = 0 |
|
| 2 | cnring | |- CCfld e. Ring |
|
| 3 | ringgrp | |- ( CCfld e. Ring -> CCfld e. Grp ) |
|
| 4 | 2 3 | ax-mp | |- CCfld e. Grp |
| 5 | 0cn | |- 0 e. CC |
|
| 6 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 7 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 8 | eqid | |- ( 0g ` CCfld ) = ( 0g ` CCfld ) |
|
| 9 | 6 7 8 | grpid | |- ( ( CCfld e. Grp /\ 0 e. CC ) -> ( ( 0 + 0 ) = 0 <-> ( 0g ` CCfld ) = 0 ) ) |
| 10 | 4 5 9 | mp2an | |- ( ( 0 + 0 ) = 0 <-> ( 0g ` CCfld ) = 0 ) |
| 11 | 1 10 | mpbi | |- ( 0g ` CCfld ) = 0 |
| 12 | 11 | eqcomi | |- 0 = ( 0g ` CCfld ) |