Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
mulid2 |
|- ( x e. CC -> ( 1 x. x ) = x ) |
3 |
|
mulid1 |
|- ( x e. CC -> ( x x. 1 ) = x ) |
4 |
2 3
|
jca |
|- ( x e. CC -> ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) |
5 |
4
|
rgen |
|- A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) |
6 |
1 5
|
pm3.2i |
|- ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) |
7 |
|
cnring |
|- CCfld e. Ring |
8 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
9 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
10 |
|
eqid |
|- ( 1r ` CCfld ) = ( 1r ` CCfld ) |
11 |
8 9 10
|
isringid |
|- ( CCfld e. Ring -> ( ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) ) |
12 |
7 11
|
ax-mp |
|- ( ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) |
13 |
6 12
|
mpbi |
|- ( 1r ` CCfld ) = 1 |
14 |
13
|
eqcomi |
|- 1 = ( 1r ` CCfld ) |