Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
ovmpot |
|- ( ( 1 e. CC /\ x e. CC ) -> ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = ( 1 x. x ) ) |
3 |
2
|
eqcomd |
|- ( ( 1 e. CC /\ x e. CC ) -> ( 1 x. x ) = ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) ) |
4 |
1 3
|
mpan |
|- ( x e. CC -> ( 1 x. x ) = ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) ) |
5 |
|
mullid |
|- ( x e. CC -> ( 1 x. x ) = x ) |
6 |
4 5
|
eqtr3d |
|- ( x e. CC -> ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x ) |
7 |
|
ovmpot |
|- ( ( x e. CC /\ 1 e. CC ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = ( x x. 1 ) ) |
8 |
1 7
|
mpan2 |
|- ( x e. CC -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = ( x x. 1 ) ) |
9 |
|
mulrid |
|- ( x e. CC -> ( x x. 1 ) = x ) |
10 |
8 9
|
eqtrd |
|- ( x e. CC -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) |
11 |
6 10
|
jca |
|- ( x e. CC -> ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) ) |
12 |
11
|
rgen |
|- A. x e. CC ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) |
13 |
1 12
|
pm3.2i |
|- ( 1 e. CC /\ A. x e. CC ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) ) |
14 |
|
cnring |
|- CCfld e. Ring |
15 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
16 |
|
mpocnfldmul |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) |
17 |
|
eqid |
|- ( 1r ` CCfld ) = ( 1r ` CCfld ) |
18 |
15 16 17
|
isringid |
|- ( CCfld e. Ring -> ( ( 1 e. CC /\ A. x e. CC ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) ) |
19 |
14 18
|
ax-mp |
|- ( ( 1 e. CC /\ A. x e. CC ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) |
20 |
13 19
|
mpbi |
|- ( 1r ` CCfld ) = 1 |
21 |
20
|
eqcomi |
|- 1 = ( 1r ` CCfld ) |