Metamath Proof Explorer


Theorem cnfld1

Description: One is the unit element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion cnfld1
|- 1 = ( 1r ` CCfld )

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 mulid2
 |-  ( x e. CC -> ( 1 x. x ) = x )
3 mulid1
 |-  ( x e. CC -> ( x x. 1 ) = x )
4 2 3 jca
 |-  ( x e. CC -> ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) )
5 4 rgen
 |-  A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x )
6 1 5 pm3.2i
 |-  ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) )
7 cnring
 |-  CCfld e. Ring
8 cnfldbas
 |-  CC = ( Base ` CCfld )
9 cnfldmul
 |-  x. = ( .r ` CCfld )
10 eqid
 |-  ( 1r ` CCfld ) = ( 1r ` CCfld )
11 8 9 10 isringid
 |-  ( CCfld e. Ring -> ( ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) )
12 7 11 ax-mp
 |-  ( ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 )
13 6 12 mpbi
 |-  ( 1r ` CCfld ) = 1
14 13 eqcomi
 |-  1 = ( 1r ` CCfld )