| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0cn |  |-  0 e. CC | 
						
							| 2 | 1 | ne0ii |  |-  CC =/= (/) | 
						
							| 3 |  | cncms |  |-  CCfld e. CMetSp | 
						
							| 4 |  | eqid |  |-  ( UnifSt ` CCfld ) = ( UnifSt ` CCfld ) | 
						
							| 5 | 4 | cnflduss |  |-  ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) | 
						
							| 6 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 7 |  | absf |  |-  abs : CC --> RR | 
						
							| 8 |  | subf |  |-  - : ( CC X. CC ) --> CC | 
						
							| 9 |  | fco |  |-  ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) | 
						
							| 10 | 7 8 9 | mp2an |  |-  ( abs o. - ) : ( CC X. CC ) --> RR | 
						
							| 11 |  | ffn |  |-  ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) | 
						
							| 12 |  | fnresdm |  |-  ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) | 
						
							| 13 | 10 11 12 | mp2b |  |-  ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) | 
						
							| 14 |  | cnfldds |  |-  ( abs o. - ) = ( dist ` CCfld ) | 
						
							| 15 | 14 | reseq1i |  |-  ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) | 
						
							| 16 | 13 15 | eqtr3i |  |-  ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) | 
						
							| 17 | 6 16 4 | cmetcusp1 |  |-  ( ( CC =/= (/) /\ CCfld e. CMetSp /\ ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) ) -> CCfld e. CUnifSp ) | 
						
							| 18 | 2 3 5 17 | mp3an |  |-  CCfld e. CUnifSp |