Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
1
|
ne0ii |
|- CC =/= (/) |
3 |
|
cncms |
|- CCfld e. CMetSp |
4 |
|
eqid |
|- ( UnifSt ` CCfld ) = ( UnifSt ` CCfld ) |
5 |
4
|
cnflduss |
|- ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) |
6 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
7 |
|
absf |
|- abs : CC --> RR |
8 |
|
subf |
|- - : ( CC X. CC ) --> CC |
9 |
|
fco |
|- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
10 |
7 8 9
|
mp2an |
|- ( abs o. - ) : ( CC X. CC ) --> RR |
11 |
|
ffn |
|- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
12 |
|
fnresdm |
|- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
13 |
10 11 12
|
mp2b |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
14 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
15 |
14
|
reseq1i |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
16 |
13 15
|
eqtr3i |
|- ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
17 |
6 16 4
|
cmetcusp1 |
|- ( ( CC =/= (/) /\ CCfld e. CMetSp /\ ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) ) -> CCfld e. CUnifSp ) |
18 |
2 3 5 17
|
mp3an |
|- CCfld e. CUnifSp |